1
|
Wu W, Chen L, Liang R, Huang S, Li X, Huang B, Luo H, Zhang M, Wang X, Zhu H. The role of light in regulating plant growth, development and sugar metabolism: a review. FRONTIERS IN PLANT SCIENCE 2025; 15:1507628. [PMID: 39840366 PMCID: PMC11747448 DOI: 10.3389/fpls.2024.1507628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/11/2024] [Indexed: 01/23/2025]
Abstract
Light provides the necessary energy for plant photosynthesis, which allows plants to produce organic matter and energy conversion, during plant growth and development. Light provides material energy to plants as the basis for cell division and differentiation, chlorophyll synthesis, tissue growth and stomatal movement, and light intensity, photoperiod, and light quality play important roles in these processes. There are several regulatory mechanisms involved in sugar metabolism in plants, and light, as one of the regulatory factors, affects cell wall composition, starch granules, sucrose synthesis, and vascular bundle formation. Similarly, sugar species and genes are affected in the context of light-regulated sugar metabolism. We searched the available databases and found that there are fewer relevant reviews. Therefore, this paper provides a summary of the effects of light on plant growth and development and sugar metabolism, further elaborates on the mechanisms of light effects on plants, and provides some new insights for a better understanding of how plant growth is regulated under different light conditions.
Collapse
Affiliation(s)
- Wenyuan Wu
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Long Chen
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
- Nutrition and Bromatology Group, Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) – CITEXVI, Universidade de Vigo, Vigo, Spain
| | - Rentao Liang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Shiping Huang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang Li
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Bilei Huang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Huimin Luo
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Miao Zhang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaoxun Wang
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| | - Hua Zhu
- Guangxi Zhuang and Yao Ethnic Medicine Key Laboratory, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
2
|
Ladinig U, Hörandl E, Klatt S, Wagner J. Reproductive Performance of the Alpine Plant Species Ranunculus kuepferi in a Climatic Elevation Gradient: Apomictic Tetraploids Do Not Show a General Fitness Advantage over Sexual Diploids. Life (Basel) 2024; 14:1202. [PMID: 39337984 PMCID: PMC11433044 DOI: 10.3390/life14091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Previous studies on the mountain plant Ranunculus kuepferi concluded that apomictic self-compatible tetraploids have experienced a niche shift toward a colder climate during the Holocene, which suggests a fitness advantage over the sexual, self-sterile diploid parents under cold and stressful high-mountain conditions. However, there is still a lack of information on whether reproductive development would be advantageous for tetraploids. Here, we report on microsporogenesis, megagametogenesis, the dynamics of flower and seed development, and the consequences for reproductive success in a common garden experiment along a 1000 m climatic elevation gradient and in natural populations. Flower buds were initiated in the year preceding anthesis and passed winter in a pre-meiotic stage. Flower morphology differed in the known cytotype-specific way in that tetraploid flowers produced about twice as many carpels and fewer petals, stamens, and pollen grains than diploid flowers. Tetraploids developed precociously aposporous embryo sacs and showed a high rate of developmental disturbances. Sexual seed formation prevailed in diploids and pseudogamous apomixis in tetraploids. Along the elevation gradient, stigma pollen load, pollen performance, and seed output decreased. Combinations of reproductive traits, namely, bypass of meiosis irregularities and uniparental reproduction, might have promoted the vast expansion of apomictic R. kuepferi lines across the European Alps.
Collapse
Affiliation(s)
- Ursula Ladinig
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
| | - Simone Klatt
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen, Germany
- Central Administration, University of Goettingen, Humboldtallee 15, D-37073 Goettingen, Germany
| | - Johanna Wagner
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020 Innsbruck, Austria
| |
Collapse
|
3
|
Baguma JK, Mukasa SB, Ochwo-Ssemakula M, Nuwamanya E, Iragaba P, Wembabazi E, Kanaabi M, Hyde PT, Setter TL, Alicai T, Yada B, Esuma W, Baguma Y, Kawuki RS. Assessment of Cassava Pollen Viability and Ovule Fertilizability under Red-Light, 6-Benzyl Adenine, and Silver Thiosulphate Treatments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1988. [PMID: 39065515 PMCID: PMC11280604 DOI: 10.3390/plants13141988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Understanding pollen and ovule fertility as factors influencing fruit and seed set is important in cassava breeding. Extended daylength with red light (RL) and plant growth regulators (PGRs) have been used to induce flowering and fruit set in cassava without any reference to effects on pollen viability or ovule fertilizability. This study investigated the effects of field-applied RL and PGR on pollen viability and ovule fertilizability. Panels of cassava genotypes with early or moderate flowering responses were used. RL was administered from dusk to dawn. Two PGRs, 6-benzyl adenine (BA), a cytokinin and silver thiosulphate (STS), an anti-ethylene, were applied. Pollen viability was assessed based on pollen grain diameter, in vitro stainability, in vivo germinability, ovule fertilizability, and ploidy level. Treating flowers with RL increased the pollen diameter from 145.6 in control to 148.5 µm in RL, 78.5 to 93.0% in stainability, and 52.0 to 56.9% in ovule fertilizability in treated female flowers. The fruit set also increased from 51.5 in control to 71.8% in RL-treated female flowers. The seed set followed a similar trend. The ploidy level of pollen from RL-treated flowers increased slightly and was positively correlated with pollen diameter (R2 = 0.09 *), ovule fertilization (R2 = 0.20 *), fruit set (R2 = 0.59 *), and seed set (R2 = 0.60 *). Treating flowers with PGR did not affect pollen diameter but increased stainability from 78.5% in control to 82.1%, ovule fertilizability from 42.9 to 64.9%, and fruit set from 23.2 to 51.9% in PGR-treated female flowers. Combined BA + STS application caused the highest ovule fertilizability, fruit, and seed set efficiency. These results show that RL and PGR treatments increase pollen viability and ovule fertilizability. This is important for planning pollination strategies in cassava breeding programmes.
Collapse
Affiliation(s)
- Julius K. Baguma
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Settumba B. Mukasa
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
| | - Mildred Ochwo-Ssemakula
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
| | - Ephraim Nuwamanya
- School of Agricultural Sciences, Makerere University, Kampala P.O. Box 7062, Uganda; (S.B.M.); (M.O.-S.); (E.N.)
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Paula Iragaba
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Enoch Wembabazi
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Michael Kanaabi
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
| | - Peter T. Hyde
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (P.T.H.); (T.L.S.)
| | - Tim L. Setter
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA; (P.T.H.); (T.L.S.)
| | - Titus Alicai
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | - Benard Yada
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | - Williams Esuma
- National Crops Resources Research Institute (NaCRRI), Namulonge, Kampala P.O. Box 7084, Uganda; (P.I.); (E.W.); (M.K.); (T.A.); (B.Y.); (W.E.)
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | - Yona Baguma
- National Agricultural Research Organization (NARO) Secretariat, Entebbe P.O. Box 295, Uganda;
| | | |
Collapse
|
4
|
Hörandl E. Apomixis and the paradox of sex in plants. ANNALS OF BOTANY 2024; 134:1-18. [PMID: 38497809 PMCID: PMC11161571 DOI: 10.1093/aob/mcae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The predominance of sex in eukaryotes, despite the high costs of meiosis and mating, remains an evolutionary enigma. Many theories have been proposed, none of them being conclusive on its own, and they are, in part, not well applicable to land plants. Sexual reproduction is obligate in embryophytes for the great majority of species. SCOPE This review compares the main forms of sexual and asexual reproduction in ferns and angiosperms, based on the generation cycling of sporophyte and gametophyte (leaving vegetative propagation aside). The benefits of sexual reproduction for maintenance of genomic integrity in comparison to asexuality are discussed in the light of developmental, evolutionary, genetic and phylogenetic studies. CONCLUSIONS Asexual reproduction represents modifications of the sexual pathway, with various forms of facultative sexuality. For sexual land plants, meiosis provides direct DNA repair mechanisms for oxidative damage in reproductive tissues. The ploidy alternations of meiosis-syngamy cycles and prolonged multicellular stages in the haploid phase in the gametophytes provide a high efficiency of purifying selection against recessive deleterious mutations. Asexual lineages might buffer effects of such mutations via polyploidy and can purge the mutational load via facultative sexuality. The role of organelle-nuclear genome compatibility for maintenance of genome integrity is not well understood. In plants in general, the costs of mating are low because of predominant hermaphroditism. Phylogenetic patterns in the archaeplastid clade suggest that high frequencies of sexuality in land plants are concomitant with a stepwise increase of intrinsic and extrinsic stress factors. Furthermore, expansion of genome size in land plants would increase the potential mutational load. Sexual reproduction appears to be essential for keeping long-term genomic integrity, and only rare combinations of extrinsic and intrinsic factors allow for shifts to asexuality.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with herbarium), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Bradican JP, Tomasello S, Boscutti F, Karbstein K, Hörandl E. Phylogenomics of Southern European Taxa in the Ranunculus auricomus Species Complex: The Apple Doesn't Fall Far from the Tree. PLANTS (BASEL, SWITZERLAND) 2023; 12:3664. [PMID: 37960021 PMCID: PMC10650656 DOI: 10.3390/plants12213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
The taxonomic status of many Southern European taxa of the Ranunculus auricomus complex remains uncertain despite this region's proximity to the native ranges of the sexual progenitor species of the complex. We investigated whether additional sexual progenitor species are present in the Mediterranean region. Utilizing target enrichment of 736 single-copy nuclear gene regions and flow cytometry, we analyzed phylogenomic relationships, the ploidy level, and the reproductive mode in representatives of 16 populations in Southern Europe, with additional sequence data from herbarium collections. Additionally, phased sequence assemblies from suspected nothotaxa were mapped to previously described sexual progenitor species in order to determine hybrid ancestry. We found the majority of Mediterranean taxa to be tetraploid, with hybrid populations propagating primarily via apomixis. Phylogenomic analysis revealed that except for the progenitor species, the Mediterranean taxa are often polyphyletic. Most apomictic taxa showed evidence of mixed heritage from progenitor species, with certain progenitor genotypes having mapped more to the populations from adjacent geographical regions. Geographical trends were found in phylogenetic distance, roughly following an east-to-west longitudinal demarcation of the complex, with apomicts extending to the southern margins. Additionally, we observed post-hybridization divergence between the western and eastern populations of nothotaxa in Southern Europe. Our results support a classification of apomictic populations as nothotaxa, as previously suggested for Central Europe.
Collapse
Affiliation(s)
- John Paul Bradican
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Georg-August University School of Sciences (GAUSS), University of Göttingen, Wilhelmsplatz 1, 37073 Göttingen, Germany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Francesco Boscutti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 91, 33100 Udine, Italy
| | - Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Hans Knöll Strasse 10, 07743 Jena, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| |
Collapse
|
6
|
Paravar A, Maleki Farahani S, Rezazadeh A. Morphological, physiological and biochemical response of L allemantia species to elevated temperature and light duration during seed development. Heliyon 2023; 9:e15149. [PMID: 37123928 PMCID: PMC10133671 DOI: 10.1016/j.heliyon.2023.e15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Seed weight, storability, and germinability can depend on maternal plant's environment. However, there is slight information about the effect of light and temperature on seed quality of Lallemantia species. The purpose of this research was to determine the properties of physio-biochemical of maternal plant, seed quality, and seed chemical composition of Lallemantia species (Lallemantia iberica and Lallemantia royleana) under temperature (15 °C, 25 °C, and 35 °C) and photoperiod (8 hd-1, 16 hd-1, and 24 hd-1) maternal plants environment. Increasing temperature and photoperiod caused a reduction in leaf chlorophyll, stomatal movement, total soluble sugar, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes activities, and an increment in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content of seeds. However, the highest weight, germination, vigor index, and longevity, seed chemical compositions were obtained in offspring which matured under 25 °C for 16 hd-1. The highest germination, oil, and relative percentage of fatty acids (oleic acid (OA), linoleic acid (LA), and linolenic acid (LNA)) were obtained in L. iberica seeds. On the contrary, longevity, mucilage, and sucrose were more abundant in L. royleana seeds. Overall, this research has clearly shown that temperature and light quality and quantity of maternal plant's environment have an immensely effect on producing of seeds with high-quality. However, it is necessary to investigate the impact of the epigenetic mechanisms of the maternal plant on the offspring in future studies.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Saeideh Maleki Farahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
- Corresponding author.
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Niccolò T, Anderson AW, Emidio A. Apomixis: oh, what a tangled web we have! PLANTA 2023; 257:92. [PMID: 37000270 PMCID: PMC10066125 DOI: 10.1007/s00425-023-04124-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Apomixis is a complex evolutionary trait with many possible origins. Here we discuss various clues and causes, ultimately proposing a model harmonizing the three working hypotheses on the topic. Asexual reproduction through seeds, i.e., apomixis, is the holy grail of plant biology. Its implementation in modern breeding could be a game-changer for agriculture. It has the potential to generate clonal crops and maintain valuable complex genotypes and their associated heterotic traits without inbreeding depression. The genetic basis and origins of apomixis are still unclear. There are three central hypothesis for the development of apomixis that could be: i) a deviation from the sexual developmental program caused by an asynchronous development, ii) environmentally triggered through epigenetic regulations (a polyphenism of sex), iii) relying on one or more genes/alleles. Because of the ever-increasing complexity of the topic, the path toward a detailed understanding of the mechanisms underlying apomixis remains unclear. Here, we discuss the most recent advances in the evolution perspective of this multifaceted trait. We incorporated our understanding of the effect of endogenous effectors, such as small RNAs, epigenetic regulation, hormonal pathways, protein turnover, and cell wall modification in response to an upside stress. This can be either endogenous (hybridization or polyploidization) or exogenous environmental stress, mainly due to oxidative stress and the corresponding ROS (Reacting Oxygen Species) effectors. Finally, we graphically represented this tangled web.
Collapse
Affiliation(s)
- Terzaroli Niccolò
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy.
| | - Aaron W Anderson
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Fulbright Scholar From Department of Plant Sciences, University of California, Davis, USA
| | - Albertini Emidio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121, Perugia, Italy
- Consorzio Interuniversitario per le Biotecnologie (CIB), Trieste, Italy
| |
Collapse
|
8
|
Hörandl E. Geographical Parthenogenesis in Alpine and Arctic Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:844. [PMID: 36840192 PMCID: PMC9959270 DOI: 10.3390/plants12040844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
The term "Geographical parthenogenesis" describes the phenomenon that asexual organisms usually occupy larger and more northern distribution areas than their sexual relatives, and tend to colonize previously glaciated areas. Several case studies on alpine and arctic plants confirm the geographical pattern, but the causal factors behind the phenomenon are still unclear. Research of the last decade in several plant families has shed light on the question and evaluated some of the classical evolutionary theories. Results confirmed, in general, that the advantages of uniparental reproduction enable apomictic plants to re-colonize faster in larger and more northern distribution areas. Associated factors like polyploidy seem to contribute mainly to the spatial separation of sexual and asexual cytotypes. Ecological studies suggest a better tolerance of apomicts to colder climates and temperate extremes, whereby epigenetic flexibility and phenotypic plasticity play an important role in occupying ecological niches under harsh conditions. Genotypic diversity appears to be of lesser importance for the distributional success of asexual plants. Classical evolutionary theories like a reduced pressure of biotic interactions in colder climates and hence an advantage to asexuals (Red Queen hypothesis) did not gain support from studies on plants. However, it is also still enigmatic why sexual outcrossing remains the predominant mode of reproduction also in alpine floras. Constraints for the origin of apomixis might play a role. Interestingly, some studies suggest an association of sexuality with abiotic stresses. Light stress in high elevations might explain why most alpine plants retain sexual reproduction despite other environmental factors that would favor apomixis. Directions for future research will be given.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
9
|
Paetzold C, Barke BH, Hörandl E. Evolution of Transcriptomes in Early-Generation Hybrids of the Apomictic Ranunculus auricomus Complex ( Ranunculaceae). Int J Mol Sci 2022; 23:ijms232213881. [PMID: 36430360 PMCID: PMC9697309 DOI: 10.3390/ijms232213881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Hybridisation in plants may cause a shift from sexual to asexual seed formation (apomixis). Indeed, natural apomictic plants are usually hybrids, but it is still unclear how hybridisation could trigger the shift to apomixis. The genome evolution of older apomictic lineages is influenced by diverse processes such as polyploidy, mutation accumulation, and allelic sequence divergence. To disentangle the effects of hybridisation from these other factors, we analysed the transcriptomes of flowering buds from artificially produced, diploid F2 hybrids of the Ranunculus auricomus complex. The hybrids exhibited unreduced embryo sac formation (apospory) as one important component of apomixis, whereas their parental species were sexual. We revealed 2915 annotated single-copy genes that were mostly under purifying selection according to dN/dS ratios. However, pairwise comparisons revealed, after rigorous filtering, 79 genes under diversifying selection between hybrids and parents, whereby gene annotation assigned ten of them to reproductive processes. Four genes belong to the meiosis-sporogenesis phase (ASY1, APC1, MSP1, and XRI1) and represent, according to literature records, candidate genes for apospory. We conclude that hybridisation could combine novel (or existing) mutations in key developmental genes in certain hybrid lineages, and establish (together with altered gene expression profiles, as observed in other studies) a heritable regulatory mechanism for aposporous development.
Collapse
Affiliation(s)
- Claudia Paetzold
- Department of Botany and Molecular Evolution, Senckenberg Research Institute, 60325 Frankfurt am Main, Germany
| | - Birthe H. Barke
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Goettingen, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Goettingen, Germany
- Correspondence:
| |
Collapse
|
10
|
Variation of Residual Sexuality Rates along Reproductive Development in Apomictic Tetraploids of Paspalum. PLANTS 2022; 11:plants11131639. [PMID: 35807591 PMCID: PMC9269205 DOI: 10.3390/plants11131639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Most apomictic plants are facultative, maintaining the ability to reproduce sexually at different frequencies depending on the taxa, ploidy, and reproductive stage. In this context, Paspalum species are good model systems for studies evaluating the varying levels of apomixis expression. We aimed to identify, in apomictic tetraploid Paspalum species, the degree of apomixis and residual sexuality in three stages of reproductive development, and if their expression varies along them in order to predict their realized impact on the genetic diversity of future generations. Three main stages in the reproductive development (i.e., ovule, seed, and progeny) were studied in tetraploids from populations of P. cromyorhizon and P. maculosum. Mature ovules were studied using cytoembryological analysis, seeds by flow cytometry, and progeny tests with molecular markers. The expression of sexuality and apomixis was compared in each stage. We observed a decline in expression of sexual reproduction through the consecutive stages, jointly with an increase of apomixis expression. Both species showed at least one tetraploid plant capable of producing progeny by sexual means. These small rates of sexually originated progeny prove the ability of apomictic plants to produce low levels of genetic variation through rare events of sexuality. This study also demonstrates the importance of analyzing different reproductive stages in order to get a whole picture of the reproductive outcomes in plant evolution.
Collapse
|
11
|
Hörandl E. Novel Approaches for Species Concepts and Delimitation in Polyploids and Hybrids. PLANTS (BASEL, SWITZERLAND) 2022; 11:204. [PMID: 35050093 PMCID: PMC8781807 DOI: 10.3390/plants11020204] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 05/08/2023]
Abstract
Hybridization and polyploidization are important processes for plant evolution. However, classification of hybrid or polyploid species has been notoriously difficult because of the complexity of processes and different evolutionary scenarios that do not fit with classical species concepts. Polyploid complexes are formed via combinations of allopolyploidy, autopolyploidy and homoploid hybridization with persisting sexual reproduction, resulting in many discrete lineages that have been classified as species. Polyploid complexes with facultative apomixis result in complicated net-work like clusters, or rarely in agamospecies. Various case studies illustrate the problems that apply to traditional species concepts to hybrids and polyploids. Conceptual progress can be made if lineage formation is accepted as an inevitable consequence of meiotic sex, which is established already in the first eukaryotes as a DNA restoration tool. The turnaround of the viewpoint that sex forms species as lineages helps to overcome traditional thinking of species as "units". Lineage formation and self-sustainability is the prerequisite for speciation and can also be applied to hybrids and polyploids. Species delimitation is aided by the improved recognition of lineages via various novel -omics methods, by understanding meiosis functions, and by recognizing functional phenotypes by considering morphological-physiological-ecological adaptations.
Collapse
Affiliation(s)
- Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073 Göttingen, Germany
| |
Collapse
|
12
|
Ulum FB, Hadacek F, Hörandl E. Polyploidy Improves Photosynthesis Regulation within the Ranunculus auricomus Complex (Ranunculaceae). BIOLOGY 2021; 10:biology10080811. [PMID: 34440043 PMCID: PMC8389576 DOI: 10.3390/biology10080811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
Simple Summary Genome duplication or multiplication, polyploidy, has contributed substantially to the evolutionary success of plants. Polyploidy is often connected to a higher resilience to environmental stress. We have chosen the goldilocks, the Ranunculus auricomus complex, to study effects of light stress. In this species complex, diploid (2x), tetraploid (4x), and hexaploid (6x) cytotypes occur in Central Europe in both shaded and sun-exposed habitats. In this study, we exposed them to different photoperiods in climate growth chambers to explore how the efficiency of photosynthesis varied between the various ploidies (2x, 4x, and 6x). We used fluorescence experiments exploring the proportion of light that is captured for photosynthesis and the resulting energy fluxes. In addition, quenching coefficients can be calculated that inform about the capability of a plant to deal with excess light. We found that the polyploids can quench excess light better, which concurs with their adaptation to open habitats and their predominantly asexual mode of reproduction that is probably favored by low stress levels in the reproductive tissues. Abstract Polyploidy has substantially contributed to successful plant evolution, and is often connected to a higher resilience to environmental stress. We test the hypothesis that polyploids tolerate light stress better than diploids. The Ranunculus auricomus complex comprises diploid (2x), tetraploid (4x), and hexaploid (6x) cytotypes, the former of which occur in shaded habitats and the latter more in open, sun-exposed habitats in Central Europe. In this study, we experimentally explored the effects of ploidy and photoperiod extension on the efficiency of photosystem II in the three cytotypes in climate growth chambers. Quantum yields and various coefficients that can be calculated from light curve, Kautsky curve, and fluorescent transient OJIP experiments provided support for the hypothesis that, in comparison to diploids, the improved regulation of excess light by more efficient photochemical and non-chemical quenching in polyploids might have facilitated the adaptation to unshaded habitats. We suggest how lower stress levels in reproductive tissues of polyploids might have favored asexual reproduction.
Collapse
Affiliation(s)
- Fuad Bahrul Ulum
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073 Göttingen, Germany;
- Georg-August University School of Science (GAUSS), University of Göttingen, 37073 Göttingen, Germany
- Biology Department, Faculty of Mathematics and Sciences, Jember University, Jember 68121, Indonesia
| | - Franz Hadacek
- Department of Plant Biochemistry, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37077 Göttingen, Germany;
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, 37073 Göttingen, Germany;
- Correspondence: ; Tel.: +49-551-39-7843
| |
Collapse
|
13
|
Karbstein K, Tomasello S, Hodač L, Lorberg E, Daubert M, Hörandl E. Moving beyond assumptions: Polyploidy and environmental effects explain a geographical parthenogenesis scenario in European plants. Mol Ecol 2021; 30:2659-2675. [PMID: 33871107 DOI: 10.1111/mec.15919] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Geographical parthenogenesis (GP) describes the phenomenon that apomicts tend to have larger distribution areas and/or occur at higher altitudes or latitudes compared to sexual relatives. However, the complex effects of genome-wide heterozygosity, ploidy, reproduction mode (sexual vs. apomictic), and environment shaping GP of plants are still not well understood. We ascertained ploidy and reproduction mode by flow cytometry of 221 populations, and added genomic RADseq data (maximum 33,165 loci) of 80 taxa of the Ranunculus auricomus polyploid plant complex in temperate Europe. We observed 7% mainly diploid sexual, 28% facultative apomictic (mean sexuality 7.1%), and 65% obligate apomictic populations. Sexuals occupied a more southern, smaller distribution area, whereas apomicts expanded their range to higher latitudes. Within the complex, we detected three main genetic clusters and highly reticulate relationships. A genetically-informed path analysis using GLMMs revealed several significant relationships. Sexuality of populations (percent of sexual seeds) was higher in diploids compared to polyploids, associated with more petals, and similar between forests and open habitats. In contrast to other apomictic plant complexes, sexuality was mainly positively correlated to solar radiation and isothermality, which fits the southern distribution. We found up to three times higher heterozygosity in polyploids compared to diploids, and generally more heterozygous individuals in forests compared with open habitats. Interestingly, we revealed a previously unknown positive association between heterozygosity and temperature seasonality, suggesting a higher resistance of polyploids to more extreme climatic conditions. We provide empirical evidence for intrinsic and extrinsic factors shaping the GP pattern in a polyploid plant complex.
Collapse
Affiliation(s)
- Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany.,Georg-August University School of Science (GAUSS), University of Göttingen, Göttingen, Germany
| | - Salvatore Tomasello
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ladislav Hodač
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Ellen Lorberg
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| | - Mareike Daubert
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany.,Institute of Biology and Environmental Sciences, Carl von Ossietzky University, Oldenburg, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Albrecht-von-Haller Institute for Plant Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Mateo de Arias M, Gao L, Sherwood DA, Dwivedi KK, Price BJ, Jamison M, Kowallis BM, Carman JG. Whether Gametophytes are Reduced or Unreduced in Angiosperms Might Be Determined Metabolically. Genes (Basel) 2020; 11:genes11121449. [PMID: 33276690 PMCID: PMC7761559 DOI: 10.3390/genes11121449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
In angiosperms, meiotic failure coupled with the formation of genetically unreduced gametophytes in ovules (apomeiosis) constitute major components of gametophytic apomixis. These aberrant developmental events are generally thought to be caused by mutation. However, efforts to locate the responsible mutations have failed. Herein, we tested a fundamentally different hypothesis: apomeiosis is a polyphenism of meiosis, with meiosis and apomeiosis being maintained by different states of metabolic homeostasis. Microarray analyses of ovules and pistils were used to differentiate meiotic from apomeiotic processes in Boechera (Brassicaceae). Genes associated with translation, cell division, epigenetic silencing, flowering, and meiosis characterized sexual Boechera (meiotic). In contrast, genes associated with stress responses, abscisic acid signaling, reactive oxygen species production, and stress attenuation mechanisms characterized apomictic Boechera (apomeiotic). We next tested whether these metabolic differences regulate reproductive mode. Apomeiosis switched to meiosis when premeiotic ovules of apomicts were cultured on media that increased oxidative stress. These treatments included drought, starvation, and H2O2 applications. In contrast, meiosis switched to apomeiosis when premeiotic pistils of sexual plants were cultured on media that relieved oxidative stress. These treatments included antioxidants, glucose, abscisic acid, fluridone, and 5-azacytidine. High-frequency apomeiosis was initiated in all sexual species tested: Brassicaceae, Boechera stricta, Boechera exilis, and Arabidopsis thaliana; Fabaceae, Vigna unguiculata; Asteraceae, Antennaria dioica. Unreduced gametophytes formed from ameiotic female and male sporocytes, first division restitution dyads, and nucellar cells. These results are consistent with modes of reproduction and types of apomixis, in natural apomicts, being regulated metabolically.
Collapse
Affiliation(s)
- Mayelyn Mateo de Arias
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Instituto Tecnológico de Santo Domingo, 10103 Santo Domingo, Dominican Republic
| | - Lei Gao
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332000, China
| | - David A. Sherwood
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Sherwood Pet Health, Logan, UT 84321, USA
| | - Krishna K. Dwivedi
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Crop Improvement Division, Indian Grassland and Fodder Research Institute, 284003 Jhansi, India
| | - Bo J. Price
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Molecular Biology Program, University of Utah, Salt Lake City, UT 84112-5750, USA
| | - Michelle Jamison
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Wescor, Inc. An Elitech Company, Logan, UT 84321, USA
| | - Becky M. Kowallis
- Caisson Laboratories, Inc., Smithfield, UT 84335, USA; (K.K.D.); (M.J.); (B.M.K.)
- Cytiva, Inc., Logan, UT 84321, USA
| | - John G. Carman
- Plants, Soils, and Climate Department, Utah State University, Logan, UT 84322-4820, USA; (M.M.d.A.); (L.G.); (D.A.S.); (B.J.P.)
- Correspondence: ; Tel.: +1-435-512-4913
| |
Collapse
|
15
|
Barke BH, Karbstein K, Daubert M, Hörandl E. The relation of meiotic behaviour to hybridity, polyploidy and apomixis in the Ranunculus auricomus complex (Ranunculaceae). BMC PLANT BIOLOGY 2020; 20:523. [PMID: 33203395 PMCID: PMC7672892 DOI: 10.1186/s12870-020-02654-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/20/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Hybridization and polyploidization are powerful evolutionary factors that are associated with manifold developmental changes in plants such as irregular progression of meiosis and sporogenesis. The emergence of apomixis, which is asexual reproduction via seeds, is supposed to be connected to these factors and was often regarded as an escape from hybrid sterility. However, the functional trigger of apomixis is still unclear. Recently formed di- and polyploid Ranunculus hybrids, as well as their parental species were analysed for their modes of mega- and microsporogenesis by microscopy. Chromosomal configurations during male meiosis were screened for abnormalities. Meiotic and developmental abnormalities were documented qualitatively and collected quantitatively for statistical evaluations. RESULTS Allopolyploids showed significantly higher frequencies of erroneous microsporogenesis than homoploid hybrid plants. Among diploids, F2 hybrids had significantly more disturbed meiosis than F1 hybrids and parental plants. Chromosomal aberrations included laggard chromosomes, chromatin bridges and disoriented spindle activities. Failure of megasporogenesis appeared to be much more frequent in than of microsporogenesis is correlated to apomixis onset. CONCLUSIONS Results suggest diverging selective pressures on female and male sporogenesis, with only minor effects of hybridity on microsporogenesis, but fatal effects on the course of megasporogenesis. Hence, pollen development continues without major alterations, while selection will favour apomixis as alternative to the female meiotic pathway. Relation of investigated errors of megasporogenesis with the observed occurrence of apospory in Ranunculus hybrids identifies disturbed female meiosis as potential elicitor of apomixis in order to rescue these plants from hybrid sterility. Male meiotic disturbance appears to be stronger in neopolyploids than in homoploid hybrids, while disturbances of megasporogenesis were not ploidy-dependent.
Collapse
Affiliation(s)
- Birthe H Barke
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany.
| | - Kevin Karbstein
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
| | - Mareike Daubert
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
- Present Address: Carl von Ossietzky University, Institute of Biology and Environmental Sciences, Carl von Ossietzky Straße 9-11, D-26129, Oldenburg, Germany
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute for Plant Sciences, University of Goettingen, Untere Karspuele 2, D-37073, Goettingen, Germany
| |
Collapse
|
16
|
Syngelaki E, Daubert M, Klatt S, Hörandl E. Phenotypic Responses, Reproduction Mode and Epigenetic Patterns under Temperature Treatments in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae). BIOLOGY 2020; 9:E315. [PMID: 33003474 PMCID: PMC7600421 DOI: 10.3390/biology9100315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/04/2022]
Abstract
Plant life in alpine habitats is shaped by harsh abiotic conditions and cold climates. Phenotypic variation of morphological characters and reproduction can be influenced by temperature stress. Nevertheless, little is known about the performance of different cytotypes under cold stress and how epigenetic patterns could relate to phenotypic variation. Ranunculus kuepferi, a perennial alpine plant, served as a model system for testing the effect of cold stress on phenotypic plasticity, reproduction mode, and epigenetic variation. Diploid and autotetraploid individuals were placed in climate growth cabinets under warm and cold conditions. Morphological traits (height, leaves and flowers) and the proportion of well-developed seeds were measured as fitness indicators, while flow cytometric seed screening (FCSS) was utilized to determine the reproduction mode. Subsequently, comparisons with patterns of methylation-sensitive amplified fragment-length polymorphisms (AFLPs) were conducted. Diploids grew better under warm conditions, while tetraploids performed better in cold treatments. Epigenetic patterns were correlated with the expressed morphological traits. Cold stress reduced the reproduction fitness but did not induce apomixis in diploids. Overall, our study underlines the potential of phenotypic plasticity for acclimation under environmental conditions and confirms the different niche preferences of cytotypes in natural populations. Results help to understand the pattern of geographical parthenogenesis in the species.
Collapse
Affiliation(s)
- Eleni Syngelaki
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Mareike Daubert
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, 26129 Oldenburg, Germany;
| | - Simone Klatt
- Section Safety and Environmental Protection, Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| | - Elvira Hörandl
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Georg-August-Universität Göttingen, 37073 Göttingen, Germany;
| |
Collapse
|
17
|
Chasing the Apomictic Factors in the Ranunculus auricomus Complex: Exploring Gene Expression Patterns in Microdissected Sexual and Apomictic Ovules. Genes (Basel) 2020; 11:genes11070728. [PMID: 32630035 PMCID: PMC7397075 DOI: 10.3390/genes11070728] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 12/24/2022] Open
Abstract
Apomixis, the asexual reproduction via seeds, is associated to polyploidy and hybridization. To identify possible signatures of apomixis, and possible candidate genes underlying the shift from sex to apomixis, microarray-based gene expression patterns of live microdissected ovules at four different developmental stages were compared between apomictic and sexual individuals of the Ranunculus auricomus complex. Following predictions from previous work on mechanisms underlying apomixis penetrance and expressivity in the genus, gene expression patterns were classified into three categories based on their relative expression in apomicts compared to their sexual parental ancestors. We found evidence of misregulation and differential gene expression between apomicts and sexuals, with the highest number of differences detected during meiosis progression and emergence of aposporous initial (AI) cells, a key developmental stage in the ovule of apomicts where a decision between divergent reproductive pathways takes place. While most of the differentially expressed genes (DEGs) could not be annotated, gene expression was classified into transgressive, parent of origin and ploidy effects. Genes related to gametogenesis and meiosis demonstrated patterns reflective of transgressive and genome dosage effects, which support the hypothesis of a dominant factor controlling apomixis in Ranunculus and modulated by secondary modifiers. Three genes with probable functions in sporogenesis and gametogenesis development are identified and characterized for future studies.
Collapse
|