1
|
Wang Z, Yuan Y, Shi Y, Hong Y. Subtleties of tetracycline removal during growth of microalgae-fungi consortia: Mechanistic insights from perspectives of extra- and intracellular metabolites. BIORESOURCE TECHNOLOGY 2025; 426:132352. [PMID: 40054753 DOI: 10.1016/j.biortech.2025.132352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/12/2025]
Abstract
This study focused on tetracycline (TC) as the target antibiotic and utilized the emerging microbial system microalgae-fungi consortia to treat it. Results indicate that consortia composed of microalgae Chlorella sp. HL and fungi HW12 (Aspergillus caespitosus) (HL-HW12) exhibited the optimum TC removal (93.00 %, residual concentration: 2.73 mg/L) and biomass harvesting efficiency (92.69 %) among the five kinds of constructed microalgae-fungi consortia. Mechanism analysis indicated that outside the cell, microalgae-fungi consortia strengthened TC removal and biomass harvesting by augmenting the contents of proteins, polysaccharides, fulvic acids, and humic acids. While within the cell, microalgae-fungi consortia adjusted the abundance of critical metabolites in the amino acid metabolism, nucleotide metabolism, and other metabolic pathways to cope with the coercion of TC and facilitated its elimination. This study not only provides good TC microbial treatment systems but also comprehensively reveals the TC removal and metabolic response mechanisms by microalgae-fungi consortia.
Collapse
Affiliation(s)
- Zeyuan Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yaqian Yuan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yan Shi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-Remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Li H, Li F, Wang M, Hou C, Jia F, Wang X, Li M. Growth and selenium bioaccumulation in rape seedlings promoted by strain Limosilactobacillus sp. LF-17. BMC PLANT BIOLOGY 2025; 25:429. [PMID: 40186103 PMCID: PMC11970001 DOI: 10.1186/s12870-025-06480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Selenium (Se) is an essential trace element that plays a critical role in human tissue formation, metabolism, and physiological functions. However, many individuals worldwide suffer from Se deficiency diseases. This study aims to evaluate the impact of Se-tolerant LF-17 agents and exogenous Na2SeO3 application on the growth, enzyme activity, and metabolic characteristics of rape seedlings. Treatment LF-3 (inoculation of Se-tolerant LF-17 agent and exogenous Na2SeO3, with the soil Se concentration of 5 mg/kg) led to a 38.62% increase in plant height and a 116.7% increase in fresh weight. And the Se-tolerant LF-17 agent in treatment LF-3 also reduced the oxidative stress induced by exogenous Na2SeO3 compared to that of treatment LF-2 (with the same amount exogenous Na2SeO3 only), as evidenced by the lower activities of SOD, POD, and CAT, as well as less content of malondialdehyde. Furthermore, the upregulation of metabolic pathways such as "cuticle, suberine, and wax biosynthesis" "flavonoid biosynthesis," and "terpenoid backbone biosynthesis" enhanced the plant's stress resistance as revealed by non-targeted metabolomics sequencing method. This approach offers promising applications for improving Se bioavailability in crops, mitigating Se toxicity, addressing global Se deficiency challenges and is expected to contribute to fulfilling the Se supplementation needs of the population.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Fengjiao Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mengyu Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Caibo Hou
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Feng Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xifeng Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Mingjun Li
- Henan Haochuang Agricultural Technology Group Company Limited, Zhengzhou, 450001, China
| |
Collapse
|
3
|
Hossain Z, Zhao S, Luo X, Liu K, Li L, Hubbard M. Deciphering Aphanomyces euteiches-pea-biocontrol bacterium interactions through untargeted metabolomics. Sci Rep 2024; 14:8877. [PMID: 38632368 PMCID: PMC11024177 DOI: 10.1038/s41598-024-52949-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/25/2024] [Indexed: 04/19/2024] Open
Abstract
Aphanomyces euteiches causes root rot in pea, leading to significant yield losses. However, the metabolites involved in this pathosystem have not been thoroughly studied. This study aimed to fill this gap and explore mechanisms of bacterial suppression of A. euteiches via untargeted metabolomics using pea grown in a controlled environment. Chemical isotope labeling (CIL), followed by liquid chromatography-mass spectrometry (LC-MS), was used for metabolite separation and detection. Univariate and multivariate analyses showed clear separation of metabolites from pathogen-treated pea roots and roots from other treatments. A three-tier approach positively or putatively identified 5249 peak pairs or metabolites. Of these, 403 were positively identified in tier 1; 940 were putatively identified with high confidence in tier 2. There were substantial changes in amino acid pool, and fatty acid and phenylpropanoid pathway products. More metabolites, including salicylic and jasmonic acids, were upregulated than downregulated in A. euteiches-infected roots. 1-aminocyclopropane-1-carboxylic acid and 12-oxophytodienoic acid were upregulated in A. euteiches + bacterium-treated roots compared to A. euteiches-infected roots. A great number of metabolites were up- or down-regulated in response to A. euteiches infection compared with the control and A. euteiches + bacterium-treated plants. The results of this study could facilitate improved disease management.
Collapse
Affiliation(s)
- Zakir Hossain
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| | - Shuang Zhao
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Xian Luo
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Kui Liu
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | - Michelle Hubbard
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, 1 Airport Road, Swift Current, Saskatchewan, S9H 3X2, Canada.
| |
Collapse
|
4
|
Yang Y, Hu J, Wei X, Huang K, Li C, Yang G. Deciphering core microbiota in rhizosphere soil and roots of healthy and Rhizoctonia solani-infected potato plants from various locations. Front Microbiol 2024; 15:1386417. [PMID: 38585705 PMCID: PMC10995396 DOI: 10.3389/fmicb.2024.1386417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024] Open
Abstract
Black scurf caused by Rhizoctonia solani severely affects potato production. Through amplification of V3-V4 and ITS1-5f variable regions of 16S and internal transcribed spacer (ITS) rRNA, the study was based on the location (Kunming, Qujing, and Zhaotong), plant components (rhizosphere soil and roots), and sample types (healthy and diseased) to assess the diversity of bacterial and fungal communities. We found plant components significantly influence microbial diversity, with rhizosphere soil being more diverse than roots, and the microbial community in the root is mainly derived from the rhizosphere soil. Moreover, the rhizosphere soil and roots of healthy potato plants exhibit greater microbial diversity compared to those of potato plants infected by Rhizoctonia solani. Bacterial phyla Actinobacteriota and Acidobacteriota were enriched in rhizosphere soil compared to that of roots, whereas Proteobacteria and Cyanobacteria showed the opposite trend. Fungal phylum Ascomycota was found in low relative abundance in rhizosphere soil than in roots, whereas Basidiomycota showed the opposite trend. Bacterial genera including Streptomyces, Lysobacter, Bacillus, Pseudomonas, Ensifer, Enterobacter, and the Rhizobium group (Allorhizobium, Neorhizobium, Pararhizobium, Rhizobium), along with fungal genera such as Aspergillus, Penicillium, Purpureocillium, and Gibberella moniliformis, have the potential ability of plant growth promotion and disease resistance. However, most fungal species and some bacterial species are pathogenic to potato and could provide a conducive environment for black scurf infection. Interaction within the bacterial network increased in healthy plants, contrasting with the trend in the fungal network. Our findings indicate that R. solani significantly alters potato plant microbial diversity, underscoring the complexity and potential interactions between bacterial and fungal communities for promoting potato plant health and resistance against black scurf.
Collapse
Affiliation(s)
| | | | | | | | | | - Genhua Yang
- State Key Laboratory for Protection and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Zhang P, Huguet-Tapia J, Peng Z, Liu S, Obasa K, Block AK, White FF. Genome analysis and hyphal movement characterization of the hitchhiker endohyphal Enterobacter sp. from Rhizoctonia solani. Appl Environ Microbiol 2024; 90:e0224523. [PMID: 38319098 PMCID: PMC10952491 DOI: 10.1128/aem.02245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Bacterial-fungal interactions are pervasive in the rhizosphere. While an increasing number of endohyphal bacteria have been identified, little is known about their ecology and impact on the associated fungal hosts and the surrounding environment. In this study, we characterized the genome of an Enterobacter sp. Crenshaw (En-Cren), which was isolated from the generalist fungal pathogen Rhizoctonia solani, and examined the genetic potential of the bacterium with regard to the phenotypic traits associated with the fungus. Overall, the En-Cren genome size was typical for members of the genus and was capable of free-living growth. The genome was 4.6 MB in size, and no plasmids were detected. Several prophage regions and genomic islands were identified that harbor unique genes in comparison with phylogenetically closely related Enterobacter spp. Type VI secretion system and cyanate assimilation genes were identified from the bacterium, while some common heavy metal resistance genes were absent. En-Cren contains the key genes for indole-3-acetic acid (IAA) and phenylacetic acid (PAA) biosynthesis, and produces IAA and PAA in vitro, which may impact the ecology or pathogenicity of the fungal pathogen in vivo. En-Cren was observed to move along hyphae of R. solani and on other basidiomycetes and ascomycetes in culture. The bacterial flagellum is essential for hyphal movement, while other pathways and genes may also be involved.IMPORTANCEThe genome characterization and comparative genomics analysis of Enterobacter sp. Crenshaw provided the foundation and resources for a better understanding of the ecology and evolution of this endohyphal bacteria in the rhizosphere. The ability to produce indole-3-acetic acid and phenylacetic acid may provide new angles to study the impact of phytohormones during the plant-pathogen interactions. The hitchhiking behavior of the bacterium on a diverse group of fungi, while inhibiting the growth of some others, revealed new areas of bacterial-fungal signaling and interaction, which have yet to be explored.
Collapse
Affiliation(s)
- Peiqi Zhang
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Jose Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Zhao Peng
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- College of Plant Protection, Jilin Agricultural University, Changchun, Jilin, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, USA
| | - Ken Obasa
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- High Plains Plant Disease Diagnostic Lab, Texas A&M AgriLife Extension Service, Amarillo, Texas, USA
| | - Anna K. Block
- Chemistry Research Unit, US Department of Agriculture-Agricultural Research Service, Gainesville, Florida, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Zhou L, Zhu T, Han S, Li S, Liu Y, Lin T, Qiao T. Changes in the Histology of Walnut ( Juglans regia L.) Infected with Phomopsis capsici and Transcriptome and Metabolome Analysis. Int J Mol Sci 2023; 24:ijms24054879. [PMID: 36902308 PMCID: PMC10003368 DOI: 10.3390/ijms24054879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Phomopsis capsici (P. capsici) causes branch blight of walnuts, which leads to significant economic loss. The molecular mechanism behind the response of walnuts remains unknown. Paraffin sectioning and transcriptome and metabolome analyses were performed to explore the changes in tissue structure, gene expression, and metabolic processes in walnut after infection with P. capsici. We found that P. capsici caused serious damage to xylem vessels during the infestation of walnut branches, destroying the structure and function of the vessels and creating obstacles to the transport of nutrients and water to the branches. The transcriptome results showed that differentially expressed genes (DEGs) were mainly annotated in carbon metabolism and ribosomes. Further metabolome analyses verified the specific induction of carbohydrate and amino acid biosynthesis by P. capsici. Finally, association analysis was performed for DEGs and differentially expressed metabolites (DEMs), which focused on the synthesis and metabolic pathways of amino acids, carbon metabolism, and secondary metabolites and cofactors. Three significant metabolites were identified: succinic semialdehyde acid, fumaric acid, and phosphoenolpyruvic acid. In conclusion, this study provides data reference on the pathogenesis of walnut branch blight and direction for breeding walnut to enhance its disease resistance.
Collapse
|
7
|
Mangel N, Fudge JB, Gruissem W, Fitzpatrick TB, Vanderschuren H. Natural Variation in Vitamin B 1 and Vitamin B 6 Contents in Rice Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:856880. [PMID: 35444674 PMCID: PMC9014206 DOI: 10.3389/fpls.2022.856880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 05/03/2023]
Abstract
Insufficient dietary intake of micronutrients contributes to the onset of deficiencies termed hidden hunger-a global health problem affecting approximately 2 billion people. Vitamin B1 (thiamine) and vitamin B6 (pyridoxine) are essential micronutrients because of their roles as enzymatic cofactors in all organisms. Metabolic engineering attempts to biofortify rice endosperm-a poor source of several micronutrients leading to deficiencies when consumed monotonously-have led to only minimal improvements in vitamin B1 and B6 contents. To determine if rice germplasm could be exploited for biofortification of rice endosperm, we screened 59 genetically diverse accessions under greenhouse conditions for variation in vitamin B1 and vitamin B6 contents across three tissue types (leaves, unpolished and polished grain). Accessions from low, intermediate and high vitamin categories that had similar vitamin levels in two greenhouse experiments were chosen for in-depth vitamer profiling and selected biosynthesis gene expression analyses. Vitamin B1 and B6 contents in polished seeds varied almost 4-fold. Genes encoding select vitamin B1 and B6 biosynthesis de novo enzymes (THIC for vitamin B1, PDX1.3a-c and PDX2 for vitamin B6) were differentially expressed in leaves across accessions contrasting in their respective vitamin contents. These expression levels did not correlate with leaf and unpolished seed vitamin contents, except for THIC expression in leaves that was positively correlated with total vitamin B1 contents in polished seeds. This study expands our knowledge of diversity in micronutrient traits in rice germplasm and provides insights into the expression of genes for vitamin B1 and B6 biosynthesis in rice.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jared B Fudge
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Teresa B Fitzpatrick
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Plant Genetics Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
8
|
Jibrin MO, Liu Q, Guingab-Cagmat J, Jones JB, Garrett TJ, Zhang S. Metabolomics Insights into Chemical Convergence in Xanthomonas perforans and Metabolic Changes Following Treatment with the Small Molecule Carvacrol. Metabolites 2021; 11:879. [PMID: 34940636 PMCID: PMC8706651 DOI: 10.3390/metabo11120879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 01/20/2023] Open
Abstract
Microbes are natural chemical factories and their metabolome comprise diverse arrays of chemicals. The genus Xanthomonas comprises some of the most important plant pathogens causing devastating yield losses globally and previous studies suggested that species in the genus are untapped chemical minefields. In this study, we applied an untargeted metabolomics approach to study the metabolome of a globally spread important xanthomonad, X. perforans. The pathogen is difficult to manage, but recent studies suggest that the small molecule carvacrol was efficient in disease control. Bacterial strains were treated with carvacrol, and samples were taken at time intervals (1 and 6 h). An untreated control was also included. There were five replicates for each sample and samples were prepared for metabolomics profiling using the standard procedure. Metabolomics profiling was carried out using a thermo Q-Exactive orbitrap mass spectrometer with Dionex ultra high-performance liquid chromatography (UHPLC) and an autosampler. Annotation of significant metabolites using the Metabolomics Standards Initiative level 2 identified an array of novel metabolites that were previously not reported in Xanthomonas perforans. These metabolites include methoxybrassinin and cyclobrassinone, which are known metabolites of brassicas; sarmentosin, a metabolite of the Passiflora-heliconiine butterfly system; and monatin, a naturally occurring sweetener found in Sclerochiton ilicifolius. To our knowledge, this is the first report of these metabolites in a microbial system. Other significant metabolites previously identified in non-Xanthomonas systems but reported in this study include maculosin; piperidine; β-carboline alkaloids, such as harman and derivatives; and several important medically relevant metabolites, such as valsartan, metharbital, pirbuterol, and ozagrel. This finding is consistent with convergent evolution found in reported biological systems. Analyses of the effect of carvacrol in time-series and associated pathways suggest that carvacrol has a global effect on the metabolome of X. perforans, showing marked changes in metabolites that are critical in energy biosynthesis and degradation pathways, amino acid pathways, nucleic acid pathways, as well as the newly identified metabolites whose pathways are unknown. This study provides the first insight into the X. perforans metabolome and additionally lays a metabolomics-guided foundation for characterization of novel metabolites and pathways in xanthomonad systems.
Collapse
Affiliation(s)
- Mustafa Ojonuba Jibrin
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Department of Crop Protection, Ahmadu Bello University, Zaria 810103, Nigeria
| | - Qingchun Liu
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Jeffrey B. Jones
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (J.G.-C.); (T.J.G.)
| | - Shouan Zhang
- Tropical Research and Education Center, IFAS, University of Florida, Homestead, FL 33031, USA; (M.O.J.); (Q.L.)
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|