1
|
Yuan Q, Wang J, Liu F, Dai X, Zhu F, Zou X, Xiong C. Genome-Wide Identification of the BTB Domain-Containing Protein Gene Family in Pepper ( Capsicum annuum L.). Int J Mol Sci 2025; 26:3429. [PMID: 40244299 PMCID: PMC11989735 DOI: 10.3390/ijms26073429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Pepper (Capsicum annuum L.), recognized as a globally preeminent vegetable, holds substantial economic and nutritional value. The BTB (broad-complex, tramtrack, and bric-a-brac) family of proteins, characterized by a highly conserved BTB domain, also denoted as the POZ domain, are intricately involved in a diverse array of biological processes. However, the existing corpus of research regarding pepper BTB genes remains relatively meager. In this study, a total of 72 CaBTB gene members were meticulously identified from the entire genome of pepper. Phylogenetic analysis illuminated the presence of conspicuous collinear relationships between the CaBTB genes and those of its closely affiliated species. Gene expression profiling and RT-qPCR analysis revealed that multiple CaBTB genes exhibited pronounced differential expression under diverse treatment regimens. Expression pattern analysis unveiled that CaBTB25 manifested a remarkably elevated abundance in leaves. Moreover, its promoters were replete with an abundance of light-responsive cis-elements. Our comprehensive and in-depth explorations into subcellular localization revealed that CaBTB25 was predominantly detected to localize within the nucleus and lacked transcriptional activation. This research provides a crucial theoretical edifice, enabling a more profound understanding of the biological functions of the BTB gene family in pepper, thereby underscoring its potential significance within the intricate network of gene-environment interactions.
Collapse
Affiliation(s)
- Qiaoling Yuan
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Jin Wang
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Feng Liu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Xiongze Dai
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Fan Zhu
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Xuexiao Zou
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| | - Cheng Xiong
- Key Laboratory for Vegetable Biology of Hunan Province, Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha 410125, China; (Q.Y.); (J.W.); (F.L.); (X.D.); (F.Z.)
- Yuelushan Lab, Changsha 410128, China
| |
Collapse
|
2
|
Tang G, Li X, Zeng F, Ma J, Guan P, Zhang B. Exploring the Genetic Basis of Drought Tolerance in Alhagi camelorum: A Comprehensive Transcriptome Study of Osmotic Stress Adaptations. Int J Mol Sci 2024; 25:12725. [PMID: 39684437 DOI: 10.3390/ijms252312725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Alhagi camelorum, a desert shrub known for its impressive drought tolerance, exhibits notable resilience under arid conditions. However, the underlying mechanisms driving its drought resistance remain largely unexplored. This study aims to investigate these mechanisms by exposing A. camelorum to osmotic stress using varying polyethylene glycol (PEG) concentrations (1%, 5%, 10%) in a controlled laboratory setting. Growth analysis revealed significant inhibition and phenotypic changes with increasing PEG levels. Transcriptomic analysis, including differentially expressed gene identification, GO enrichment analysis, and hierarchical cluster analysis of genes in roots and shoots, identified key pathways associated with drought adaptation, such as ABA-activated signaling, cell wall biogenesis, photosynthesis, and secondary metabolite biosynthesis. Notably, some genes involved in these pathways exhibited tissue-specific expression patterns and showed PEG concentration-dependent regulation. Key findings include the dose-dependent (R2 > 0.8) upregulation of a proline-rich protein (Asp01G030840) and a BURP domain-containing protein (Asp02G039780), as well as critical genes involved in cell wall biogenesis (encoding Pectinesterase inhibitor domain-containing and Fasciclin-like arabinogalactan protein), and secondary metabolite biosynthesis (encoding enzymes for terpenoid and flavonoid biosynthesis). The regulation of these genes is likely influenced by phytohormones such as ABA and other stress-related hormones, along with significant transcription factors like ABI4, TALE, MYB61, GRAS, and ERF. These insights lay the groundwork for further research into the functional roles of these genes, their regulatory networks, and their potential applications in enhancing drought resistance in desert plants and agricultural crops.
Collapse
Affiliation(s)
- Gangliang Tang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Xiangyi Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Fanjiang Zeng
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Junning Ma
- Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830013, China
| | - Pingyin Guan
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
3
|
Cai G, Zang Y, Wang Z, Liu S, Wang G. Arabidopsis BTB-A2s Play a Key Role in Drought Stress. BIOLOGY 2024; 13:561. [PMID: 39194499 DOI: 10.3390/biology13080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Drought stress significantly impacts plant growth, productivity, and yield, necessitating a swift fine-tuning of pathways for adaptation to harsh environmental conditions. This study explored the effects of Arabidopsis BTB-A2.1, BTB-A2.2, and BTB-A2.3, distinguished by their exclusive possession of the Broad-complex, Tramtrack, and Bric-à-brac (BTB) domain, on the negative regulation of drought stress mediated by abscisic acid (ABA) signaling. Promoter analysis revealed the presence of numerous ABA-responsive and drought stress-related cis-acting elements within the promoters of AtBTB-A2.1, AtBTB-A2.2, and AtBTB-A2.3. The AtBTB-A2.1, AtBTB-A2.2, and AtBTB-A2.3 transcript abundances increased under drought and ABA induction according to qRT-PCR and GUS staining. Furthermore, the Arabidopsis btb-a2.1/2/3 triple mutant exhibited enhanced drought tolerance, supporting the findings from the overexpression studies. Additionally, we detected a decrease in the stomatal aperture and water loss rate of the Arabidopsis btb-a2.1/2/3 mutant, suggesting the involvement of these genes in repressing stomatal closure. Importantly, the ABA signaling-responsive gene levels within Arabidopsis btb-a2.1/2/3 significantly increased compared with those in the wild type (WT) under drought stress. Based on such findings, Arabidopsis BTB-A2s negatively regulate drought stress via the ABA signaling pathway.
Collapse
Affiliation(s)
- Guohua Cai
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Yunxiao Zang
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Zhongqian Wang
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Shuoshuo Liu
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| | - Guodong Wang
- School of Biological Sciences, Jining Medical University, Rizhao 276800, China
| |
Collapse
|
4
|
Elsanosi HA, Zhang J, Mostafa S, Geng X, Zhou G, Awdelseid AHM, Song L. Genome-wide identification, structural and gene expression analysis of BTB gene family in soybean. BMC PLANT BIOLOGY 2024; 24:663. [PMID: 38992596 PMCID: PMC11238345 DOI: 10.1186/s12870-024-05365-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND The Bric-a-Brac/Tramtrack/Broad Complex (BTB) gene family plays essential roles in various biological processes in plants. These genes encode proteins that contain a conserved BTB domain, which is involved in protein-protein interactions and regulation of gene expression. However, there is no systematic reports on the BTB gene family in G.max. RESULTS In total, 122 soybean BTB genes were identified, which were classified into four groups based on the phylogenetic analysis. Gene structures analysis indicated that the number of exon-intron in GmBTBs ranges from 0 to18. Cis-element analysis revealed that most GmBTB genes contained cis-elements related to an abiotic stress response. In addition, qRT-PCR analyses indicated that most GmBTBs are significantly up-regulated under salinity, drought, and nitrate stresses. They suggested their potential for targeted improvement of soybean response to multiple abiotic stresses and nitrate availability. CONCLUSION These results provide valuable information for identifying the members of the GmBTB gene family in soybean and could provide a functional characterization of GmBTB genes in further research.
Collapse
Affiliation(s)
- Hind Abdelmonim Elsanosi
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Faculty of Agriculture, University of Khartoum, Khartoum, 11115, Sudan
| | - Jianhua Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Salma Mostafa
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyan Geng
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Atef Hemaida Mohammed Awdelseid
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China
- Faculty of Agriculture, University of Khartoum, Khartoum, 11115, Sudan
| | - Li Song
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
5
|
Aiana, Katwal A, Chauhan H, Upadhyay SK, Singh K. Genome-Wide Identification and Expression Analysis of the Broad-Complex, Tramtrack, and Bric-à-Brac Domain-Containing Protein Gene Family in Potato. AGRICULTURE 2024; 14:771. [DOI: 10.3390/agriculture14050771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The BTB (broad-complex, tramtrack, and bric-à-brac) domain, also known as the POZ (POX virus and zinc finger) domain, is a conserved protein–protein interaction domain present in various organisms. In this study, we conducted a genome-wide search to identify and characterize BTB genes in Solanum tuberosum. A total of 57 StBTBs were identified and analyzed for their physicochemical properties, chromosomal distribution, gene structure, conserved motifs, phylogenetic relationships, tissue-specific expression patterns, and responses to hormonal and stress treatments. We found that StBTBs were unevenly distributed across potato chromosomes and exhibited diverse gene structures and conserved motifs. Tissue-specific expression analysis revealed differential expression patterns across various potato tissues, implying their roles in plant growth and development. Furthermore, differential expression analysis under hormonal and stress treatments indicated the involvement of StBTBs in abiotic and biotic stress responses and hormone signaling pathways. Protein–protein interaction analysis identified potential interactions with ribosomal proteins, suggesting roles in translational regulation. Additionally, microRNA target site analysis revealed regulatory relationships between StBTBs and miRNAs. Our study provides a comprehensive understanding of the StBTB gene family in potato, laying the groundwork for further functional characterization and manipulation of these genes to improve stress tolerance and agricultural productivity in potato and related plant species.
Collapse
Affiliation(s)
- Aiana
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| | - Anita Katwal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| | - Hanny Chauhan
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| | | | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| |
Collapse
|
6
|
Du L, Guan Z, Liu Y, Hu D, Gao J, Sun C. Scaffold protein BTB/TAZ domain-containing genes (CmBTs) play a negative role in root development of chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:111997. [PMID: 38280641 DOI: 10.1016/j.plantsci.2024.111997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Scaffold proteins, which are known as hubs controlling information flow in cells, can function in a diverse array of biological processes in plants. The BTB/TAZ domain-containing scaffold proteins are associated with multiple signaling pathways in plants. However, there have been few studies of the roles of BT scaffold proteins in chrysanthemum to date. In this study, four CmBT genes named as CmBT1, CmBT1-LIKE1 (CmBT1L1), CmBT1-LIKE2 (CmBT1L2), and CmBT5 were cloned based our previous RNA-seq database. The four CmBT genes showed distinctive expression patterns both in different tissues and in response to different stimuli, such as light, sugar, nitrate and auxin. Knockdown of the four CmBTs facilitated the development of adventitious roots and root hair in chrysanthemum. Transcriptome sequencing analysis revealed thousands of differentially expressed genes after knockdown of the four CmBT genes. Moreover, functional annotation suggested that CmBTs play a tethering role as scaffold proteins. Our findings reveal that CmBTs can negatively regulate root development of chrysanthemum by mediating nitrate assimilation, amino acid biosynthesis, and auxin and jasmonic acid (JA) signaling pathways. This study provides new insights into the role of CmBTs in root development of chrysanthemum.
Collapse
Affiliation(s)
- Lianda Du
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Zhangji Guan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Yanhong Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Dagang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Cuihui Sun
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China.
| |
Collapse
|
7
|
Gudi S, Halladakeri P, Singh G, Kumar P, Singh S, Alwutayd KM, Abd El-Moneim D, Sharma A. Deciphering the genetic landscape of seedling drought stress tolerance in wheat ( Triticum aestivum L.) through genome-wide association studies. FRONTIERS IN PLANT SCIENCE 2024; 15:1351075. [PMID: 38510445 PMCID: PMC10952099 DOI: 10.3389/fpls.2024.1351075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Wheat is an important cereal crop constrained by several biotic and abiotic stresses including drought stress. Understating the effect of drought stress and the genetic basis of stress tolerance is important to develop drought resilient, high-yielding wheat cultivars. In this study, we investigated the effects of drought stress on seedling characteristics in an association panel consisting of 198 germplasm lines. Our findings revealed that drought stress had a detrimental effect on all the seedling characteristics under investigation with a maximum effect on shoot length (50.94% reduction) and the minimum effect on germination percentage (7.9% reduction). To gain a deeper understanding, we conducted a genome-wide association analysis using 12,511 single nucleotide polymorphisms (SNPs), which led to the identification of 39 marker-trait associations (MTAs). Of these 39 MTAs, 13 were particularly noteworthy as they accounted for >10% of the phenotypic variance with a LOD score >5. These high-confidence MTAs were further utilized to extract 216 candidate gene (CGs) models within 1 Mb regions. Gene annotation and functional characterization identified 83 CGs with functional relevance to drought stress. These genes encoded the WD40 repeat domain, Myb/SANT-like domain, WSD1-like domain, BTB/POZ domain, Protein kinase domain, Cytochrome P450, Leucine-rich repeat domain superfamily, BURP domain, Calmodulin-binding protein60, Ubiquitin-like domain, etc. Findings from this study hold significant promise for wheat breeders as they provide direct assistance in selecting lines harboring favorable alleles for improved drought stress tolerance. Additionally, the identified SNPs and CGs will enable marker-assisted selection of potential genomic regions associated with enhanced drought stress tolerance in wheat.
Collapse
Affiliation(s)
- Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Priyanka Halladakeri
- Department of Genetics and Plant Breeding, Anand Agricultural University, Anand, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Texas A&M University, AgriLife Research Center, Beaumont, TX, United States
| | - Pradeep Kumar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Satinder Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Diaa Abd El-Moneim
- Department of Plant Production (Genetic Branch), Faculty of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Achla Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
8
|
Du LD, Guan ZJ, Liu YH, Zhu HD, Sun Q, Hu DG, Sun CH. The BTB/TAZ domain-containing protein CmBT1-mediated CmANR1 ubiquitination negatively regulates root development in chrysanthemum. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:285-299. [PMID: 38314502 DOI: 10.1111/jipb.13619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
Roots are fundamental for plants to adapt to variable environmental conditions. The development of a robust root system is orchestrated by numerous genetic determinants and, among them, the MADS-box gene ANR1 has garnered substantial attention. Prior research has demonstrated that, in chrysanthemum, CmANR1 positively regulates root system development. Nevertheless, the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified. In this study, we successfully identified bric-a-brac, tramtrack and broad (BTB) and transcription adapter putative zinc finger (TAZ) domain protein CmBT1 as the interacting partner of CmANR1 through a yeast-two-hybrid (Y2H) screening library. Furthermore, we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays. Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum. In both in vitro and in vivo assays, it was evident that CmBT1 mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway. This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2, which was crucial for root development in chrysanthemum. Genetic analysis suggested that CmBT1 modulated root development, at least in part, by regulating the level of CmANR1 protein. Collectively, these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination, thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.
Collapse
Affiliation(s)
- Lian-Da Du
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Zhang-Ji Guan
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Yan-Hong Liu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hui-Dong Zhu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Quan Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Da-Gang Hu
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Cui-Hui Sun
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
9
|
Zhu P, Fan Y, Xu P, Fan G. Bioinformatic Analysis of the BTB Gene Family in Paulownia fortunei and Functional Characterization in Response to Abiotic and Biotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:4144. [PMID: 38140471 PMCID: PMC10747981 DOI: 10.3390/plants12244144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023]
Abstract
To learn about the gene structure, phylogenetic evolution, and function under biotic and abiotic stresses of BTB (Bric-a-Brac/Tramtrack/Broad Complex) genes in Paulownia fortunei, a whole-genome sequence evaluation was carried out, and a total of 62 PfBTB genes were identified. The phylogenetic analysis showed that PfBTB proteins are divided into eight groups, and these proteins are highly conserved. PfBTB genes were unevenly distributed on 17 chromosomes. The colinearity analysis found that fragment replication and tandem replication are the main modes of gene amplification in the PfBTB family. The analysis of cis-acting elements suggests that PfBTB genes may be involved in a variety of biological processes. The transcriptomic analysis results showed that PfBTB3/12/14/16/19/36/44 responded to Paulownia witches' broom (PaWB), while PfBTB1/4/17/43 responded to drought stress, and the RT-qPCR results further support the reliability of transcriptome data. In addition, the association analysis between miRNA and transcriptome revealed a 91-pair targeting relationship between miRNAs and PfBTBs. In conclusion, the BTB genes in Paulownia are systematically identified in this research. This work provides useful knowledge to more fully appreciate the potential functions of these genes and their possible roles in the occurrence of PaWB and in response to stress.
Collapse
Affiliation(s)
- Peipei Zhu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Yujie Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Pingluo Xu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China; (P.Z.); (Y.F.)
- Institute of Paulownia, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
10
|
Da Ros L, Bollina V, Soolanayakanahally R, Pahari S, Elferjani R, Kulkarni M, Vaid N, Risseuw E, Cram D, Pasha A, Esteban E, Konkin D, Provart N, Nambara E, Kagale S. Multi-omics atlas of combinatorial abiotic stress responses in wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1118-1135. [PMID: 37248640 DOI: 10.1111/tpj.16332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Field-grown crops rarely experience growth conditions in which yield can be maximized. Environmental stresses occur in combination, with advancements in crop tolerance further complicated by its polygenic nature. Strategic targeting of causal genes is required to meet future crop production needs. Here, we employed a systems biology approach in wheat (Triticum aestivum L.) to investigate physio-metabolic adjustments and transcriptome reprogramming involved in acclimations to heat, drought, salinity and all combinations therein. A significant shift in magnitude and complexity of plant response was evident across stress scenarios based on the agronomic losses, increased proline concentrations and 8.7-fold increase in unique differentially expressed transcripts (DETs) observed under the triple stress condition. Transcriptome data from all stress treatments were assembled into an online, open access eFP browser for visualizing gene expression during abiotic stress. Weighted gene co-expression network analysis revealed 152 hub genes of which 32% contained the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) transcriptional repression motif. Cross-referencing against the 31 DETs common to all stress treatments isolated TaWRKY33 as a leading candidate for greater plant tolerance to combinatorial stresses. Integration of our findings with available literature on gene functional characterization allowed us to further suggest flexible gene combinations for future adaptive gene stacking in wheat. Our approach demonstrates the strength of robust multi-omics-based data resources for gene discovery in complex environmental conditions. Accessibility of such datasets will promote cross-validation of candidate genes across studies and aid in accelerating causal gene validation for crop resiliency.
Collapse
Affiliation(s)
- Letitia Da Ros
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Venkatesh Bollina
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Raju Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Shankar Pahari
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Raed Elferjani
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada
| | - Manoj Kulkarni
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Neha Vaid
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Eddy Risseuw
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Dustin Cram
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eddi Esteban
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - David Konkin
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Sateesh Kagale
- Aquatic and Crop Resource Development, National Research Council Canada, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
Saputro TB, Jakada BH, Chutimanukul P, Comai L, Buaboocha T, Chadchawan S. OsBTBZ1 Confers Salt Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:14483. [PMID: 37833931 PMCID: PMC10572369 DOI: 10.3390/ijms241914483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
Rice (Oryza sativa L.), one of the most important commodities and a primary food source worldwide, can be affected by adverse environmental factors. The chromosome segment substitution line 16 (CSSL16) of rice is considered salt-tolerant. A comparison of the transcriptomic data of the CSSL16 line under normal and salt stress conditions revealed 511 differentially expressed sequence (DEseq) genes at the seedling stage, 520 DEseq genes in the secondary leaves, and 584 DEseq genes in the flag leaves at the booting stage. Four BTB genes, OsBTBZ1, OsBTBZ2, OsBTBN3, and OsBTBN7, were differentially expressed under salt stress. Interestingly, only OsBTBZ1 was differentially expressed at the seedling stage, whereas the other genes were differentially expressed at the booting stage. Based on the STRING database, OsBTBZ1 was more closely associated with other abiotic stress-related proteins than other BTB genes. The highest expression of OsBTBZ1 was observed in the sheaths of young leaves. The OsBTBZ1-GFP fusion protein was localized to the nucleus, supporting the hypothesis of a transcriptionally regulatory role for this protein. The bt3 Arabidopsis mutant line exhibited susceptibility to NaCl and abscisic acid (ABA) but not to mannitol. NaCl and ABA decreased the germination rate and growth of the mutant lines. Moreover, the ectopic expression of OsBTBZ1 rescued the phenotypes of the bt3 mutant line and enhanced the growth of wild-type Arabidopsis under stress conditions. These results suggest that OsBTBZ1 is a salt-tolerant gene functioning in ABA-dependent pathways.
Collapse
Affiliation(s)
- Triono B. Saputro
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bello H. Jakada
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
| | - Panita Chutimanukul
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Pathumthani, Bangkok 12120, Thailand;
| | - Luca Comai
- Genome Center and Department of Plant Biology, UC Davis, Davis, CA 95616, USA;
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (T.B.S.); (B.H.J.)
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Shalmani A, Ullah U, Tai L, Zhang R, Jing XQ, Muhammd I, Bhanbhro N, Liu WT, Li WQ, Chen KM. OsBBX19-OsBTB97/OsBBX11 module regulates spikelet development and yield production in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023:111779. [PMID: 37355232 DOI: 10.1016/j.plantsci.2023.111779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Spikelet and floral-related organs are important agronomic traits for rice grain yield. BTB (broad-complex, tram track, and bric-abrac) proteins control various developmental functions in plants; however, the molecular mechanism of BTB proteins underlying grain development and yield production is still unknown. Here, we evaluated the molecular mechanism of a previously unrecognized functional gene, namely OsBTB97 that regulates the floral and spikelet-related organs which greatly affect the final grain yield. We found that the knockdown of the OsBTB97 gene had significant impacts on the development of spikelet-related organs and grain size, resulting in a decrease in yield, by altering the transcript levels of various spikelet- and grain-related genes. Furthermore, we found that the knockout mutants of two BBX genes, OsBBX11 and OsBBX19, which interact with the OsBTB97 protein at translation and transcriptional level, respectively, displayed lower OsBTB97 expression, suggesting the genetic relationship between the BTB protein and the BBX transcription factors in rice. Taken together, our study dissects the function of the novel OsBTB97 by interacting with two BBX proteins and an OsBBX19-OsBTB97/OsBBX11 module might function in the spikelet development and seed production in rice. The outcome of the present study provides promising knowledge about BTB proteins in the improvement of crop production in plants.
Collapse
Affiliation(s)
- Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Uzair Ullah
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Li Tai
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Ran Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Izhar Muhammd
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
13
|
Ullah U, Mao W, Abbas W, Alharthi B, Bhanbhro N, Xiong M, Gul N, Shalmani A. OsMBTB32, a MATH-BTB domain-containing protein that interacts with OsCUL1s to regulate salt tolerance in rice. Funct Integr Genomics 2023; 23:139. [PMID: 37115335 DOI: 10.1007/s10142-023-01061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
MATH-BTB proteins are involved in a variety of cellular processes that regulate cell homeostasis and developmental processes. Previous studies reported the involvement of BTB proteins in the development of various organs in plants; however, the function of BTB proteins in salt stress is less studied. Here, we found a novel MATH-BTB domain-containing OsMBTB32 protein that was highly expressed in leaf, root, and shoot. The up-regulation of the OsMBTB32 transcript in 2-week-old seedlings under salt stress suggests the significant role of the OsMBTB32 gene in salinity. The OsMBTB32 transgenic seedlings (OE and RNAi) exhibited significant differences in various phenotypes, including plumule, radical, primary root, and shoot length, compared to WT seedlings. We further found that OsCUL1 proteins, particularly OsCUL1-1 and OsCUL1-3, interact with OsMBTB32 and may suppress the function of OsMBTB32 during salt stress. Moreover, OsWRKY42, a homolog of ZmWRKY114 which negatively regulates salt stress in rice, directly binds to the W-box of OsCUL1-1 and OsCUL1-3 promoters to promote the interaction of OsCUL1-1 and OsCUL1-3 with OsMBTB32 protein in rice. The overexpression of OsMBTB32 and OsCUL1-3 further confirmed the function of OsMBTB32 and OsCUL1s in salt tolerance in Arabidopsis. Overall, the findings of the present study provide promising knowledge regarding the MATH-BTB domain-containing proteins and their role in enhancing the growth and development of rice under salt stress.MATH-BTB proteins are involved in a variety of cellular processes that regulate cell homeostasis and developmental processes. Previous studies reported the involvement of BTB proteins in the development of various organs in plants; however, the function of BTB proteins in salt stress is less studied. Here, we found a novel MATH-BTB domain-containing OsMBTB32 protein that was highly expressed in leaf, root, and shoot. The up-regulation of the OsMBTB32 transcript in 2-week-old seedlings under salt stress suggests the significant role of the OsMBTB32 gene in salinity. The OsMBTB32 transgenic seedlings (OE and RNAi) exhibited significant differences in various phenotypes, including plumule, radical, primary root, and shoot length, compared to WT seedlings. We further found that OsCUL1 proteins, particularly OsCUL1-1 and OsCUL1-3, interact with OsMBTB32 and may suppress the function of OsMBTB32 during salt stress. Moreover, OsWRKY42, a homolog of ZmWRKY114 which negatively regulates salt stress in rice, directly binds to the W-box of OsCUL1-1 and OsCUL1-3 promoters to promote the interaction of OsCUL1-1 and OsCUL1-3 with OsMBTB32 protein in rice. The overexpression of OsMBTB32 and OsCUL1-3 further confirmed the function of OsMBTB32 and OsCUL1s in salt tolerance in Arabidopsis. Overall, the findings of the present study provide promising knowledge regarding the MATH-BTB domain-containing proteins and their role in enhancing the growth and development of rice under salt stress.
Collapse
Affiliation(s)
- Uzair Ullah
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenli Mao
- Shaanxi Changqing National Nature Reserve, Hanzhong, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Badr Alharthi
- Department of Biology, University College of Al Khurmah, Taif University, Taif, Saudi Arabia
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Meng Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Nazish Gul
- Department of Genetics, Hazara University, Mansehra, KPK, Pakistan
| | - Abdullah Shalmani
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Zhou Y, Zhai H, Xing S, Wei Z, He S, Zhang H, Gao S, Zhao N, Liu Q. A novel small open reading frame gene, IbEGF, enhances drought tolerance in transgenic sweet potato. FRONTIERS IN PLANT SCIENCE 2022; 13:965069. [PMID: 36388596 PMCID: PMC9660231 DOI: 10.3389/fpls.2022.965069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Small open reading frames (sORFs) can encode functional polypeptides or act as cis-translational regulators in stress responses in eukaryotes. Their number and potential importance have only recently become clear in plants. In this study, we identified a novel sORF gene in sweet potato, IbEGF, which encoded the 83-amino acid polypeptide containing an EGF_CA domain. The expression of IbEGF was induced by PEG6000, H2O2, abscisic acid (ABA), methyl-jasmonate (MeJA) and brassinosteroid (BR). The IbEGF protein was localized to the nucleus and cell membrane. Under drought stress, overexpression of IbEGF enhanced drought tolerance, promoted the accumulation of ABA, MeJA, BR and proline and upregulated the genes encoding superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in transgenic sweet potato. The IbEGF protein was found to interact with IbCOP9-5α, a regulator in the phytohormone signalling pathways. These results suggest that IbEGF interacting with IbCOP9-5α enhances drought tolerance by regulating phytohormone signalling pathways, increasing proline accumulation and further activating reactive oxygen species (ROS) scavenging system in transgenic sweet potato.
Collapse
Affiliation(s)
- Yuanyuan Zhou
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Hong Zhai
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shihan Xing
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zihao Wei
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaozhen He
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Huan Zhang
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Shaopei Gao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Ning Zhao
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Qingchang Liu
- Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/ Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Dong J, Zhang J, Liu X, Zhao C, He L, Tang R, Wang W, Li R, Jia X. RETRACTED: Genome-wide analysis of the B-box gene family in the sweetpotato wild ancestor Ipomoea trifida and determination of the function of IbBBX28 in the regulation of flowering time of Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 188:109-122. [PMID: 36029691 DOI: 10.1016/j.plaphy.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of of the Editors-in-Chief. A large part of the article is highly similar to the paper previously published by Wenqian Hou, Lei Ren, Yang Zhang, Haoyun Sun, Tianye Shi, Yulan Gu, Aimin Wang, Daifu Ma, Zongyun Li and Lei Zhang in Scientia Horticulturae 288 (2021) 110374 https://doi.org/10.1016/j.scienta.2021.110374. In particular, a large part of the two articles shows a study on the same gene family in the same plant, with similar methodological approaches, resulting in a series of highly similar figures. One of the conditions of submission of a paper for publication is that authors declare explicitly that their work is original and has not appeared in a publication elsewhere. Re-use of any data should be appropriately cited. As such this article represents a severe abuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Jingjing Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jie Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xiayu Liu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Cailiang Zhao
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Liheng He
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Ruimin Tang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Wenbin Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Runzhi Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
16
|
Ren L, Zhang T, Wu H, Ge X, Wan H, Chen S, Li Z, Ma D, Wang A. Blocking IbmiR319a Impacts Plant Architecture and Reduces Drought Tolerance in Sweet Potato. Genes (Basel) 2022; 13:genes13030404. [PMID: 35327958 PMCID: PMC8953241 DOI: 10.3390/genes13030404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 01/15/2023] Open
Abstract
MicroRNA319 (miR319) plays a key role in plant growth, development, and multiple resistance by repressing the expression of targeted TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) genes. Two members, IbmiR319a and IbmiR319c, were discovered in the miR319 gene family in sweet potato (Ipomoea batatas [L.] Lam). Here, we focused on the biological function and potential molecular mechanism of the response of IbmiR319a to drought stress in sweet potato. Blocking IbmiR319a in transgenic sweet potato (MIM319) resulted in a slim and tender phenotype and greater sensitivity to drought stress. Microscopic observations revealed that blocking IbmiR319a decreased the cell width and increased the stomatal distribution in the adaxial leaf epidermis, and also increased the intercellular space in the leaf and petiole. We also found that the lignin content was reduced, which led to increased brittleness in MIM319. Quantitative real-time PCR showed that the expression levels of key genes in the lignin biosynthesis pathway were much lower in the MIM319 lines than in the wild type. Ectopic expression of IbmiR319a-targeted genes IbTCP11 and IbTCP17 in Arabidopsis resulted in similar phenotypes to MIM319. We also showed that the expression of IbTCP11 and IbTCP17 was largely induced by drought stress. Transcriptome analysis indicated that cell growth-related pathways, such as plant hormonal signaling, were significantly downregulated with the blocking of IbmiR319a. Taken together, our findings suggest that IbmiR319a affects plant architecture by targeting IbTCP11/17 to control the response to drought stress in sweet potato.
Collapse
Affiliation(s)
- Lei Ren
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tingting Zhang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Haixia Wu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Xinyu Ge
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Huihui Wan
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shengyong Chen
- Zhanjiang Academy of Agricultural Sciences, Zhanjiang 524094, China;
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Daifu Ma
- Key Laboratory for Biology and Genetic Breeding of Sweetpotato (Xuzhou), Ministry of Agriculture/Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou Institute of Agricultural Sciences, Xuzhou 221131, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| | - Aimin Wang
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (L.R.); (T.Z.); (H.W.); (X.G.); (H.W.); (Z.L.)
- Jiangsu Key Laboratory of Phylogenomics & Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
- Correspondence: (D.M.); (A.W.); Tel.: +86-516-82189200 (D.M.); +86-516-83400033 (A.W.)
| |
Collapse
|
17
|
Shalmani A, Huang YB, Chen YB, Muhammad I, Li BB, Ullah U, Jing XQ, Bhanbhro N, Liu WT, Li WQ, Chen KM. The highly interactive BTB domain targeting other functional domains to diversify the function of BTB proteins in rice growth and development. Int J Biol Macromol 2021; 192:1311-1324. [PMID: 34655590 DOI: 10.1016/j.ijbiomac.2021.10.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 11/18/2022]
Abstract
The BTB (broad-complex, tram track, and bric-abrac) proteins are involved in developmental processes, biotic, and abiotic stress responses in various plants, but the molecular basis of protein interactions is yet to be investiagted in rice. In this study, the identified BTB proteins were divided into BTB-TAZ, MATH-BTB, BTB-NPH, BTB-ANK, BTB-Skp, BTB-DUF, and BTB-TPR subfamilies based on the additional functional domains found together with the BTB domain at N- and C-terminal as well. This suggesting that the extension region at both terminal sites could play a vital role in the BTB gene family expansion in plants. The yeast two-hybrid system, firefly luciferase complementation imaging (LCI) assay and bimolecular fluorescence complementation (BiFC) assay further confirmed that BTB proteins interact with several other proteins to perform a certain developmental process in plants. The overexpression of BTB genes of each subfamily in Arabidopsis revealed that BTB genes including OsBTB4, OsBTB8, OsBTB64, OsBTB62, OsBTB138, and OsBTB147, containing certain additional functional domains, could play a potential role in the early flowering, branching, leaf, and silique development. Thus we concluded that the presence of other functional domains such as TAZ, SKP, DUF, ANK, NPH, BACK, PQQ, and MATH could be the factor driving the diverse functions of BTB proteins in plant biology.
Collapse
Affiliation(s)
- Abdullah Shalmani
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yang-Bin Huang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Yun-Bo Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Izhar Muhammad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China; College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Bin-Bin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Uzair Ullah
- Department of Genetics, Hazara University, Mansehra, KPK, Pakistan
| | - Xiu-Qing Jing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Nadeem Bhanbhro
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Ting Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Wen-Qiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
18
|
Huang Z, Wang Z, Li X, He S, Liu Q, Zhai H, Zhao N, Gao S, Zhang H. Genome-Wide Identification and Expression Analysis of JAZ Family Involved in Hormone and Abiotic Stress in Sweet Potato and Its Two Diploid Relatives. Int J Mol Sci 2021; 22:ijms22189786. [PMID: 34575953 PMCID: PMC8468994 DOI: 10.3390/ijms22189786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/03/2023] Open
Abstract
Jasmonate ZIM-domain (JAZ) proteins are key repressors of a jasmonic acid signaling pathway. They play essential roles in the regulation of plant growth and development, as well as environmental stress responses. However, this gene family has not been explored in sweet potato. In this study, we identified 14, 15, and 14 JAZs in cultivated hexaploid sweet potato (Ipomoea batatas, 2n = 6x = 90), and its two diploid relatives Ipomoea trifida (2n = 2x = 30) and Ipomoea triloba (2n = 2x = 30), respectively. These JAZs were divided into five subgroups according to their phylogenetic relationships with Arabidopsis. The protein physiological properties, chromosome localization, phylogenetic relationship, gene structure, promoter cis-elements, protein interaction network, and expression pattern of these 43 JAZs were systematically investigated. The results suggested that there was a differentiation between homologous JAZs, and each JAZ gene played different vital roles in growth and development, hormone crosstalk, and abiotic stress response between sweet potato and its two diploid relatives. Our work provided comprehensive comparison and understanding of the JAZ genes in sweet potato and its two diploid relatives, supplied a theoretical foundation for their functional study, and further facilitated the molecular breeding of sweet potato.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Huan Zhang
- Correspondence: ; Tel./Fax: +86-010-6273-2559
| |
Collapse
|