1
|
Hippler M, Khosravitabar F. Light-Driven H 2 Production in Chlamydomonas reinhardtii: Lessons from Engineering of Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:2114. [PMID: 39124233 PMCID: PMC11314271 DOI: 10.3390/plants13152114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
In the green alga Chlamydomonas reinhardtii, hydrogen production is catalyzed via the [FeFe]-hydrogenases HydA1 and HydA2. The electrons required for the catalysis are transferred from ferredoxin (FDX) towards the hydrogenases. In the light, ferredoxin receives its electrons from photosystem I (PSI) so that H2 production becomes a fully light-driven process. HydA1 and HydA2 are highly O2 sensitive; consequently, the formation of H2 occurs mainly under anoxic conditions. Yet, photo-H2 production is tightly coupled to the efficiency of photosynthetic electron transport and linked to the photosynthetic control via the Cyt b6f complex, the control of electron transfer at the level of photosystem II (PSII) and the structural remodeling of photosystem I (PSI). These processes also determine the efficiency of linear (LEF) and cyclic electron flow (CEF). The latter is competitive with H2 photoproduction. Additionally, the CBB cycle competes with H2 photoproduction. Consequently, an in-depth understanding of light-driven H2 production via photosynthetic electron transfer and its competition with CO2 fixation is essential for improving photo-H2 production. At the same time, the smart design of photo-H2 production schemes and photo-H2 bioreactors are challenges for efficient up-scaling of light-driven photo-H2 production.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, 48143 Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | - Fatemeh Khosravitabar
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| |
Collapse
|
2
|
Fadeeva M, Klaiman D, Kandiah E, Nelson N. Structure of native photosystem II assembly intermediate from Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2024; 14:1334608. [PMID: 38322422 PMCID: PMC10844431 DOI: 10.3389/fpls.2023.1334608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 02/08/2024]
Abstract
Chlamydomonas reinhardtii Photosystem II (PSII) is a dimer consisting of at least 13 nuclear-encoded and four chloroplast-encoded protein subunits that collectively function as a sunlight-driven oxidoreductase. In this study, we present the inaugural structure of a green alga PSII assembly intermediate (pre-PSII-int). This intermediate was isolated from chloroplast membranes of the temperature-sensitive mutant TSP4, cultivated for 14 hours at a non-permissive temperature. The assembly state comprises a monomer containing subunits A, B, C, D, E, F, H, I, K, and two novel assembly factors, Psb1 and Psb2. Psb1 is identified as a novel transmembrane helix located adjacent to PsbE and PsbF (cytochrome b559). The absence of PsbJ, typically found in mature PSII close to this position, indicates that Psb1 functions as an assembly factor. Psb2 is an eukaryotic homolog of the cyanobacterial assembly factor Psb27. The presence of iron, coupled with the absence of QA, QB, and the manganese cluster, implies a protective mechanism against photodamage and provides insights into the intricate assembly process.
Collapse
Affiliation(s)
- Mariia Fadeeva
- The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Klaiman
- The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| | - Eaazhisai Kandiah
- CM01 Beamline, European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Nathan Nelson
- The George S. Wise Faculty of Life Sciences, Department of Biochemistry and Molecular Biology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Fadeeva M, Klaiman D, Caspy I, Nelson N. Structure of Chlorella ohadii Photosystem II Reveals Protective Mechanisms against Environmental Stress. Cells 2023; 12:1971. [PMID: 37566050 PMCID: PMC10416949 DOI: 10.3390/cells12151971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023] Open
Abstract
Green alga Chlorella ohadii is known for its ability to carry out photosynthesis under harsh conditions. Using cryogenic electron microscopy (cryoEM), we obtained a high-resolution structure of PSII at 2.72 Å. This structure revealed 64 subunits, which encompassed 386 chlorophylls, 86 carotenoids, four plastoquinones, and several structural lipids. At the luminal side of PSII, a unique subunit arrangement was observed to protect the oxygen-evolving complex. This arrangement involved PsbO (OEE1), PsbP (OEE2), PsbB, and PsbU (a homolog of plant OEE3). PsbU interacted with PsbO, PsbC, and PsbP, thereby stabilizing the shield of the oxygen-evolving complex. Significant changes were also observed at the stromal electron acceptor side. PsbY, identified as a transmembrane helix, was situated alongside PsbF and PsbE, which enclosed cytochrome b559. Supported by the adjacent C-terminal helix of Psb10, these four transmembrane helices formed a bundle that shielded cytochrome b559 from the surrounding solvent. Moreover, the bulk of Psb10 formed a protective cap, which safeguarded the quinone site and likely contributed to the stacking of PSII complexes. Based on our findings, we propose a protective mechanism that prevents QB (plastoquinone B) from becoming fully reduced. This mechanism offers insights into the regulation of electron transfer within PSII.
Collapse
Affiliation(s)
| | | | | | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; (M.F.); (D.K.); (I.C.)
| |
Collapse
|
4
|
Fadeeva M, Klaiman D, Caspy I, Nelson N. CryoEM PSII structure reveals adaptation mechanisms to environmental stress in Chlorella ohadii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539358. [PMID: 37205566 PMCID: PMC10187303 DOI: 10.1101/2023.05.04.539358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Performing photosynthesis in the desert is a challenging task since it requires a fast adaptation to extreme illumination and temperature changes. To understand adaptive mechanisms, we purified Photosystem II (PSII) from Chlorella ohadii , a green alga from the desert soil surface, and identified structural elements that might enable the photosystem functioning under harsh conditions. The 2.72 Å cryogenic electron-microscopy (cryoEM) structure of PSII exhibited 64 subunits, encompassing 386 chlorophylls, 86 carotenoids, four plastoquinones, and several structural lipids. At the luminal side of PSII, the oxygen evolving complex was protected by a unique subunit arrangement - PsbO (OEE1), PsbP (OEE2), CP47, and PsbU (plant OEE3 homolog). PsbU interacted with PsbO, CP43, and PsbP, thus stabilising the oxygen evolving shield. Substantial changes were observed on the stromal electron acceptor side - PsbY was identified as a transmembrane helix situated alongside PsbF and PsbE enclosing cytochrome b559, supported by the adjacent C-terminal helix of Psb10. These four transmembrane helices bundled jointly, shielding cytochrome b559 from the solvent. The bulk of Psb10 formed a cap protecting the quinone site and probably contributed to the PSII stacking. So far, the C. ohadii PSII structure is the most complete description of the complex, suggesting numerous future experiments. A protective mechanism that prevented Q B from rendering itself fully reduced is proposed.
Collapse
Affiliation(s)
| | | | - Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| |
Collapse
|
5
|
Vidal‐Meireles A, Kuntam S, Széles E, Tóth D, Neupert J, Bock R, Tóth SZ. The lifetime of the oxygen-evolving complex subunit PSBO depends on light intensity and carbon availability in Chlamydomonas. PLANT, CELL & ENVIRONMENT 2023; 46:422-439. [PMID: 36320098 PMCID: PMC10100022 DOI: 10.1111/pce.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
PSBO is essential for the assembly of the oxygen-evolving complex in plants and green algae. Despite its importance, we lack essential information on its lifetime and how it depends on the environmental conditions. We have generated nitrate-inducible PSBO amiRNA lines in the green alga Chlamydomonas reinhardtii. Transgenic strains grew normally under non-inducing conditions, and their photosynthetic performance was comparable to the control strain. Upon induction of the PSBO amiRNA constructs, cell division halted. In acetate-containing medium, cellular PSBO protein levels decreased by 60% within 24 h in the dark, by 75% in moderate light, and in high light, the protein completely degraded. Consequently, the photosynthetic apparatus became strongly damaged, probably due to 'donor-side-induced photoinhibition', and cellular ultrastructure was also severely affected. However, in the absence of acetate during induction, PSBO was remarkably stable at all light intensities and less substantial changes occurred in photosynthesis. Our results demonstrate that the lifetime of PSBO strongly depends on the light intensity and carbon availability, and thus, on the metabolic status of the cells. We also confirm that PSBO is required for photosystem II stability in C. reinhardtii and demonstrate that its specific loss also entails substantial changes in cell morphology and cell cycle.
Collapse
Affiliation(s)
- André Vidal‐Meireles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Present address:
Institute of Plant Biology and Biotechnology (IBBP), Westfälische Wilhelms‐Universität Münster (WWU)MünsterGermany
| | - Soujanya Kuntam
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| | - Eszter Széles
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Dávid Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
- Doctoral School of BiologyUniversity of SzegedSzegedHungary
| | - Juliane Neupert
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Ralph Bock
- Max Planck Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - Szilvia Z. Tóth
- Laboratory for Molecular Photobioenergetics, Biological Research CentreInstitute of Plant BiologySzegedHungary
| |
Collapse
|
6
|
Caspy I, Schwartz T, Bayro-Kaiser V, Fadeeva M, Kessel A, Ben-Tal N, Nelson N. Dimeric and high-resolution structures of Chlamydomonas Photosystem I from a temperature-sensitive Photosystem II mutant. Commun Biol 2021; 4:1380. [PMID: 34887518 PMCID: PMC8660910 DOI: 10.1038/s42003-021-02911-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
Water molecules play a pivotal functional role in photosynthesis, primarily as the substrate for Photosystem II (PSII). However, their importance and contribution to Photosystem I (PSI) activity remains obscure. Using a high-resolution cryogenic electron microscopy (cryo-EM) PSI structure from a Chlamydomonas reinhardtii temperature-sensitive photoautotrophic PSII mutant (TSP4), a conserved network of water molecules - dating back to cyanobacteria - was uncovered, mainly in the vicinity of the electron transport chain (ETC). The high-resolution structure illustrated that the water molecules served as a ligand in every chlorophyll that was missing a fifth magnesium coordination in the PSI core and in the light-harvesting complexes (LHC). The asymmetric distribution of the water molecules near the ETC branches modulated their electrostatic landscape, distinctly in the space between the quinones and FX. The data also disclosed the first observation of eukaryotic PSI oligomerisation through a low-resolution PSI dimer that was comprised of PSI-10LHC and PSI-8LHC. Caspy et al. report the structure of PSI from a temperature-sensitive photoautotrophic PSII mutant of Chlamydomonas reinhardtii (TSP4), and report the distribution of conserved water molecules in the structure from cyanobacterial to higher plant PSI. They suggest that the asymmetric distribution of water molecules near the electron transfer chain modulates the electron transfer from quinones to FX.
Collapse
Affiliation(s)
- Ido Caspy
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Tom Schwartz
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Vinzenz Bayro-Kaiser
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Mariia Fadeeva
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amit Kessel
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|