1
|
Qin L, Kong F, Wei L, Cui M, Li J, Zhu C, Liu Y, Xia G, Liu S. Maize ZmSRO1e promotes mesocotyl elongation and deep sowing tolerance by inhibiting the activity of ZmbZIP61. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1571-1586. [PMID: 38874204 DOI: 10.1111/jipb.13714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
Deep sowing is a traditional method for drought resistance in maize production, and mesocotyl elongation is strongly associated with the ability of maize to germinate from deep soil. However, little is known about the functional genes and mechanisms regulating maize mesocotyl elongation. In the present study, we identified a plant-specific SIMILAR TO RCD-ONE (SRO) protein family member, ZmSRO1e, involved in maize mesocotyl elongation. The expression of ZmSRO1e is strongly inhibited upon transfer from dark to white light. The loss-of-function zmsro1e mutant exhibited a dramatically shorter mesocotyl than the wild-type in both constant light and darkness, while overexpression of ZmSRO1e significantly promoted mesocotyl elongation, indicating that ZmSRO1e positively regulates mesocotyl elongation. We showed that ZmSRO1e physically interacted with ZmbZIP61, an ortholog of Arabidopsis ELONGATED HYPOCOTYL 5 (HY5) and showed a function similar to that of HY5 in regulating photomorphogenesis. We found that ZmSRO1e repressed the transcriptional activity of ZmbZIP61 toward target genes involved in the regulation of cell expansion, such as ZmEXPB4 and ZmEXPB6, by interfering with the binding of ZmbZIP61 to the promoters of target genes. Our results provide a new understanding of the mechanism by which SRO regulates photomorphogenesis and highlight its potential application in deep sowing-resistant breeding.
Collapse
Affiliation(s)
- Lumin Qin
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, Anhui Province, China
| | - Fangfang Kong
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lin Wei
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Minghan Cui
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jianhang Li
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chen Zhu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangmin Xia
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shuwei Liu
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Byregowda R, Nagarajappa N, Rajendra Prasad S, Kumar MP. Comparative regulatory network of transcripts behind radicle emergence and seedling stage of maize ( Zea mays L.). Heliyon 2024; 10:e25683. [PMID: 38370253 PMCID: PMC10869873 DOI: 10.1016/j.heliyon.2024.e25683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
The transition from radicle emergence to seedling growth in maize is a crucial phase in the plant's life cycle, where rapid physiological and biochemical changes occur to facilitate successful development. In this study, we conducted a comparative transcriptomic analysis to gain a deeper understanding of the molecular processes driving this critical transition. The early divergence in gene expression patterns highlighted the upregulation of a substantial number of genes during radicle emergence. During radicle emergence, gene ontology (GO) term enrichment analysis unveiled active participation in biological processes such as chromatin assembly, cellular response to abiotic stress, and hormone signaling. This indicates that the initial stages of growth are marked by cellular expansion and adaptation to environmental stimuli. Conversely, in the seedling growth stage, GO analysis demonstrated a shift toward processes such as photosynthesis, nitrogen metabolism, and secondary metabolite biosynthesis, reflecting a transition to energy production and enhanced growth. In contrast, seedling growth was characterized by pathways related to photosynthesis and the production of gibberellins, crucial for robust seedling development. Hormonal regulation and starch metabolism were also prominent during radicle emergence, with various hormones, including auxins, diterpenoids, and brassinosteroids, driving processes like cell enlargement and stem growth. Moreover, starch and sucrose metabolism genes were expressed to mobilize stored reserves for energy during this stage. These findings offer valuable insights into the dynamic regulation of genes and pathways during this critical phase of maize development.
Collapse
Affiliation(s)
- Roopashree Byregowda
- Department of Seed Science and Technology, University of Agricultural Sciences, Bangalore 560065, India
| | - Nethra Nagarajappa
- Seed Technology Research Center, All India Co-ordinated Research Project on Seed (Crops), Gandhi Krishi Vignana Kendra, University of Agricultural Sciences, Bangalore 560065, India
| | | | - M.K. Prasanna Kumar
- Department of Plant Pathology, University of Agricultural Sciences, Bangalore, India
| |
Collapse
|
3
|
Ren Y, Shen F, Liu J, Liang W, Zhang C, Lian T, Jiang L. Application of Methionine Increases the Germination Rate of Maize Seeds by Triggering Multiple Phenylpropanoid Biosynthetic Genes at Transcript Levels. PLANTS (BASEL, SWITZERLAND) 2023; 12:3802. [PMID: 38005700 PMCID: PMC10675280 DOI: 10.3390/plants12223802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Methionine is an essential amino acid that initiates protein synthesis and serves as a substrate for various chemical reactions. Methionine metabolism plays an important role in Arabidopsis seed germination, but how methionine works in seed germination of maize has not been elucidated. We compared the changes in germination rate, the contents of methionine and folates, and transcriptional levels using transcriptome analysis under water or exogenous methionine treatment. The results indicate that the application of methionine increases seed germination rate (95% versus 70%), leading to significant differences in the content of methionine at 36 h, which brought the rapid increase forward by 12 h in the embryo and endosperm. Transcriptome analysis shows that methionine mainly affects the proliferation and differentiation of cells in the embryo, and the degradation of storage substances and signal transduction in the endosperm. In particular, multiple phenylpropanoid biosynthetic genes were triggered upon methionine treatment during germination. These results provide a theoretical foundation for promoting maize seed germination and serve as a valuable theoretical resource for seed priming strategies.
Collapse
Affiliation(s)
- Ying Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Fengyuan Shen
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Ji’an Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Wenguang Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572000, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; (Y.R.); (F.S.); (J.L.); (W.L.); (C.Z.)
| |
Collapse
|
4
|
Yue Y, Zhu W, Shen H, Wang H, Du J, Wang L, Hu H. DNA-Binding One Finger Transcription Factor PhDof28 Regulates Petal Size in Petunia. Int J Mol Sci 2023; 24:11999. [PMID: 37569375 PMCID: PMC10418906 DOI: 10.3390/ijms241511999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Petal size is a key indicator of the ornamental value of plants, such as Petunia hybrida L., which is a popular ornamental species worldwide. Our previous study identified a flower-specific expression pattern of a DNA-binding one finger (Dof)-type transcription factor (TF) PhDof28, in the semi-flowering and full-flowering stages of petunia. In this study, subcellular localization and activation assays showed that PhDof28 was localized in the cell nucleus and could undergo in vitro self-activation. The expression levels of PhDof28 tended to be significantly up-regulated at the top parts of petals during petunia flower opening. Transgenic petunia 'W115' and tobacco plants overexpressing PhDof28 showed similar larger petal phenotypes. The cell sizes at the middle and top parts of transgenic petunia petals were significantly increased, along with higher levels of endogenous indole-3-acetic acid (IAA) hormone. Interestingly, the expression levels of two TFs, PhNAC100 and PhBPEp, which were reported as negative regulators for flower development, were dramatically increased, while the accumulation of jasmonic acid (JA), which induces PhBPEp expression, was also significantly enhanced in the transgenic petals. These results indicated that PhDof28 overexpression could increase petal size by enhancing the synthesis of endogenous IAA in petunias. Moreover, a JA-related feedback regulation mechanism was potentially activated to prevent overgrowth of petals in transgenic plants. This study will not only enhance our knowledge of the Dof TF family, but also provide crucial genetic resources for future improvements of plant ornamental traits.
Collapse
Affiliation(s)
- Yuanzheng Yue
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (W.Z.); (H.S.); (H.W.); (J.D.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wuwei Zhu
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (W.Z.); (H.S.); (H.W.); (J.D.); (L.W.)
| | - Huimin Shen
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (W.Z.); (H.S.); (H.W.); (J.D.); (L.W.)
| | - Hongtao Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (W.Z.); (H.S.); (H.W.); (J.D.); (L.W.)
| | - Juhua Du
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (W.Z.); (H.S.); (H.W.); (J.D.); (L.W.)
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China
| | - Lianggui Wang
- College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (W.Z.); (H.S.); (H.W.); (J.D.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huirong Hu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Molecular Mechanism of Gibberellins in Mesocotyl Elongation Response to Deep-Sowing Stress in Sweet Maize. Curr Issues Mol Biol 2022; 45:197-211. [PMID: 36661501 PMCID: PMC9856927 DOI: 10.3390/cimb45010015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/31/2022] Open
Abstract
Uneven germination is still a common problem in sweet maize planting. The mesocotyl is a key driver for ground-breaking sweet maize, and deep-sowing has a longer mesocotyl. However, the physiological and molecular mechanisms of sweet maize mesocotyl elongation in response to deep-sowing remain unknown. Here we found that sweet maize inbred line Ltx05 could obtain longer mesocotyls in deep soil of 10 cm depth, and that 20 mg/L GA3 was the optimal concentration to promote mesocotyl elongation and seedling emergence. Microstructure observation showed that the longitudinal cell length of mesocotyl at 10 cm sowing depth was significantly longer than that of 1 cm. Transcriptome analysis showed that microtubule process related differentially expressed genes may contribute to the longitudinal cell elongation. The content of GAs in the mesocotyl at 10 cm sowing depth was markedly higher than that of 1 cm. Combining transcriptome data and qRT-PCR at different developmental stages, ZmGA20ox1, ZmGA20ox4 and ZmGA20ox5 were identified as three positive regulation candidate genes during mesocotyl elongation under deep-sowing conditions, and this was further confirmed by the significant elongation of the hypocotyl in heterologous transformation of Arabidopsis thaliana. These results lay a foundation for improving the ability of sweet maize to tolerate deep-sowing stress and improving the breeding of excellent deep-sowing-tolerant germplasms.
Collapse
|
6
|
Xiong CY, Gong QY, Pei H, Liao CJ, Yang RC, Li GK, Huang J. Comparative Transcriptome Analysis Reveals Regulatory Networks during the Maize Ear Shank Elongation Process. Int J Mol Sci 2021; 22:ijms22137029. [PMID: 34209973 PMCID: PMC8268914 DOI: 10.3390/ijms22137029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
In maize, the ear shank is a short branch that connects the ear to the stalk. The length of the ear shank mainly affects the transportation of photosynthetic products to the ear, and also influences the dehydration of the grain by adjusting the tightness of the husks. However, the molecular mechanisms of maize shank elongation have rarely been described. It has been reported that the maize ear shank length is a quantitative trait, but its genetic basis is still unclear. In this study, RNA-seq was performed to explore the transcriptional dynamics and determine the key genes involved in maize shank elongation at four different developmental stages. A total of 8145 differentially expressed genes (DEGs) were identified, including 729 transcription factors (TFs). Some important genes which participate in shank elongation were detected via function annotation and temporal expression pattern analyses, including genes related to signal transduction hormones (auxin, brassinosteroids, gibberellin, etc.), xyloglucan and xyloglucan xyloglucosyl transferase, and transcription factor families. The results provide insights into the genetic architecture of maize ear shanks and developing new varieties with ideal ear shank lengths, enabling adjustments for mechanized harvesting in the future.
Collapse
Affiliation(s)
- Cai-Yun Xiong
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
| | - Qing-You Gong
- Zhuhai Modern Agriculture Development Center, Zhuhai 519070, China;
| | - Hu Pei
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| | - Chang-Jian Liao
- Technical Research Center of Dry Crop Variety Breeding in Fujian Province, Crop Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China;
| | - Rui-Chun Yang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
| | - Gao-Ke Li
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crop Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (G.-K.L.); (J.H.)
| | - Jun Huang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China; (C.-Y.X.); (R.-C.Y.)
- Correspondence: (G.-K.L.); (J.H.)
| |
Collapse
|