1
|
Yuan Q, Jiang Y, Yang Q, Li W, Gan G, Cai L, Li W, Qin C, Yu C, Wang Y. Mechanisms and control measures of low temperature storage-induced chilling injury to solanaceous vegetables and fruits. FRONTIERS IN PLANT SCIENCE 2024; 15:1488666. [PMID: 39588087 PMCID: PMC11586204 DOI: 10.3389/fpls.2024.1488666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024]
Abstract
Low temperature storage is widely used for storage and transportation of fruits and vegetables after harvest. As a cold-sensitive fruit vegetable, post-harvest solanaceous vegetables and fruits are susceptible to chilling injury during low temperature storage, which reduces its sensory quality and edible quality and shortens its storage period, thus leading to huge economic losses. Therefore, it is an essential to clarify the occurrence mechanism of chilling injury caused by low temperature storage in solanaceous vegetables and fruits, and to propose corresponding prevention and control measures for chilling injury. In recent years, a series of progress has been made in the research on chilling injury prevention and control and low temperature stress tolerance of solanaceous vegetables and fruits. This paper describes the chilling injury symptoms of postharvest solanaceous vegetables and fruits, clarifies the physiological and biochemical mechanisms in the chilling injury process, the molecular mechanisms, and prevention and control measures, and summarizes the latest research advancements on chilling injury and chilling tolerance regulation of solanaceous vegetables and fruits, which can provide valuable references for low temperature storage and chilling injury prevention and control measures of solanaceous vegetables and fruits.
Collapse
Affiliation(s)
- Qi Yuan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yaqin Jiang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Qihong Yang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Weiliu Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Guiyun Gan
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liangyu Cai
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Wenjia Li
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chunchun Qin
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Chuying Yu
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yikui Wang
- Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
2
|
Wang J, Wang Y, Li Y, Yang L, Sun B, Zhang Y, Xu Y, Yan X. l-Arginine treatment maintains postharvest quality in blueberry fruit by enhancing antioxidant capacity during storage. J Food Sci 2023; 88:3666-3680. [PMID: 37477270 DOI: 10.1111/1750-3841.16710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
The postharvest quality of blueberry fruit is largely limited by deterioration. l-arginine (Arg) is a functional nontoxic amino acid with high biological activities. This study investigated the positive effects and the underlying mechanism of Arg treatment on the quality of postharvest blueberries. Arg effectively mitigated fruit decay and improved the quality of blueberries, including weight loss, firmness, and soluble solid content. Mechanistically, Arg-mediated activation of the anti-oxidative defense system reduced reactive oxygen species-mediated oxidative damage. Moreover, Arg treatment decreased the activities and gene expression of phospholipase D, lipoxygenase, and lipase-inhibiting membrane lipid peroxidation during the prolonged storage of blueberries. Meanwhile, Arg treatment increased nitric oxide (NO) content and NO synthase activity. Furthermore, correlation and principal component analyses revealed the enhancement of Arg treatment on antioxidant capacity. This study suggests that Arg treatment can maintain the postharvest quality of blueberries by improving antioxidant capacity.
Collapse
Affiliation(s)
- Jiaqi Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, P. R. China
| | - Yajuan Wang
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, P. R. China
| | - Yuxuan Li
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, P. R. China
| | - Ling Yang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, P. R. China
| | - Bingxin Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yunhe Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Yufeng Xu
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
| | - Xuerui Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, P. R. China
- Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, P. R. China
| |
Collapse
|
3
|
Niu B, Fei Y, Liu R, Chen H, Fang X, Wu W, Mu H, Gao H. Effect of oxyresveratrol on the quality and membrane lipid metabolism of shiitake mushroom (Lentinus edodes) during storage. Food Chem 2023; 427:136700. [PMID: 37356268 DOI: 10.1016/j.foodchem.2023.136700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
The effect of oxyresveratrol on postharvest quality and membrane lipid metabolism of shiitake mushroom was investigated. The result exhibited that oxyresveratrol retarded browning, maintained firmness and alleviated occurrence of decay of shiitake mushroom. The oxidation and hydrolysis of membrane phospholipids were suppressed by oxyresveratrol treatment, which was associated with reduced LOX and PLD activities and increased SOD and CAT activities. The membrane lipidomics of shiitake mushroom was determined by LC-MS. 385 lipid species and 13 fatty acids in membrane lipids were identified by multiple reaction monitoring method. Compared with control group, the phospholipic acid and lysophospholipid reduced by 29.24% and 21.29% in oxyresveratrol-treated group, respectively, which alleviated hydrolysis of phospholipid. Meanwhile, oxyresveratrol maintained the unsaturation of fatty acids and alleviated oxidation of phospholipid. These results demonstrated that oxyresveratrol could play a dual role of inhibiting the oxidation and hydrolysis of phospholipids to mitigate cellular damage of shiitake mushroom.
Collapse
Affiliation(s)
- Ben Niu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingchang Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Ruiling Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hangjun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Honglei Mu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
|
5
|
Noonim P, Venkatachalam K. Combination of salicylic acid and ultrasonication for alleviating chilling injury symptoms of longkong. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Objectives
Chilling injury is a prominent physiological disorder in longkong fruit pericarp when stored under 13 °C for a prolonged period. This study aimed to investigate the effects of individual salicylic acid (SA) and ultrasonication (US) treatments and of the combination salicylic acid and ultrasonication (SA-US) on alleviating the chilling injury symptoms in longkong fruit pericarp when in prolonged cold storage.
Materials and methods
SA (1 mmol/L) and US (40 kHz, 10 min at 90% amplitude, 350 W) were used as individual and combined (SA-US) treatments to control the chilling injury in longkong pericarp. The various quality measures were checked every 2 days in longkong for up to 18 days of cold storage (13 °C, 90% relative humidity).
Results
The results revealed that the control fruits treated with water exhibited severe chilling injury symptoms followed in rank order by US, SA, and SA-US cases. Treatments such as US and SA alone were more effective in controlling chilling injuries than control, while only minimal significant differences were noticed between them. On the other hand, the longkong pericarp treated with the SA-US combination had significantly increased antioxidant enzyme (superoxide dismutase and catalase) activities and decreased levels of membrane lytic (phospholipase D and lipoxygenase) enzymes and browning-inducing enzymes (phenylalanine ammonia lyase and polyphenol oxidase). Consequently, in the longkong pericarp, the chilling injury index, electrolytic leakage, respiration rate, weight loss, firmness, malondialdehyde content, changes in unsaturated and saturated fatty acid contents, and reactive oxygen species were significantly controlled by this treatment.
Conclusions
The present study concludes that longkong fruit treatment with a combination of US and SA is an excellent alternative for controlling the chilling injury symptoms and extending the shelf-life.
Collapse
Affiliation(s)
- Paramee Noonim
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang, Surat Thani, Thailand
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University Surat Thani Campus, Makham Tia, Mueang, Surat Thani, Thailand
| |
Collapse
|