1
|
Minello LVP, Kuntzler SG, Lamb TI, Neves CDO, Berghahn E, da Paschoa RP, Silveira V, de Lima JC, Aguzzoli C, Sperotto RA. Rice plants treated with biochar derived from Spirulina ( Arthrospira platensis) optimize resource allocation towards seed production. FRONTIERS IN PLANT SCIENCE 2024; 15:1422935. [PMID: 39359626 PMCID: PMC11444984 DOI: 10.3389/fpls.2024.1422935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
The use of biofertilizers is becoming an economical and environmentally friendly alternative to promote sustainable agriculture. Biochar from microalgae/cyanobacteria can be applied to enhance the productivity of food crops through soil improvement, slow nutrient absorption and release, increased water uptake, and long-term mitigation of greenhouse gas sequestration. Therefore, the aim of this study was to evaluate the stimulatory effects of biochar produced from Spirulina (Arthrospira platensis) biomass on the development and seed production of rice plants. Biochar was produced by slow pyrolysis at 300°C, and characterization was performed through microscopy, chemical, and structural composition analyses. Molecular and physiological analyses were performed in rice plants submitted to different biochar concentrations (0.02, 0.1, and 0.5 mg mL-1) to assess growth and productivity parameters. Morphological and physicochemical characterization revealed a heterogeneous morphology and the presence of several minerals (Na, K, P, Mg, Ca, S, Fe, and Si) in the biochar composition. Chemical modification of compounds post-pyrolysis and a highly porous structure with micropores were observed. Rice plants submitted to 0.5 mg mL-1 of biochar presented a decrease in root length, followed by an increase in root dry weight. The same concentration influenced seed production, with an increase of 44% in the number of seeds per plant, 17% in the percentage of full seeds per plant, 12% in the weight of 1,000 full seeds, 53% in the seed weight per plant, and 12% in grain area. Differential proteomic analyses in shoots and roots of rice plants submitted to 0.5 mg mL-1 of biochar for 20 days revealed a fine-tuning of resource allocation towards seed production. These results suggest that biochar derived from Arthrospira platensis biomass can stimulate rice seed production.
Collapse
Affiliation(s)
- Luana Vanessa Peretti Minello
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| | | | - Thainá Inês Lamb
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | | | - Emílio Berghahn
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - Roberta Pena da Paschoa
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - Vanildo Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center, State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | | | - Cesar Aguzzoli
- Area of Knowledge in Exact Sciences and Engineering, Graduate Program in Materials Engineering and Science, University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Raul Antonio Sperotto
- Botany Department, Graduate Program in Plant Physiology, Biology Institute, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
2
|
Yu Y, Li J. Biochar-derived dissolved and particulate matter effects on the phytotoxicity of polyvinyl chloride nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167258. [PMID: 37741394 DOI: 10.1016/j.scitotenv.2023.167258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Nanoplastics in environments are potentially detrimental to plant growth. Appropriate doses of biochar can alleviate the phytotoxicity of nanoplastics under hydroponic conditions. However, the specific mechanisms remain unknown. In this study, the effects of biochar-derived dissolved matter (BCDM) and biochar-derived particulate matter (BCPM) on the phytotoxicity of polyvinyl chloride (PVC) nanoplastics were investigated and the underlying influencing mechanisms were elucidated. The results showed that PVC nanoplastics can be adsorbed and taken up by lettuce roots, inducing oxidative damage to lettuce shoots and roots and reducing their fresh weight. BCDM can promote the aggregation and sedimentation of PVC nanoplastics, and BCPM can adsorb PVC nanoplastics and cause barrier effect, which will reduce the exposure dose of PVC nanoplastics. Furthermore, nutrients in BCDM can promote lettuce growth. As a result, the presence of both BCDM and BCPM significantly mitigated the oxidative stress of lettuce shoots and roots as demonstrated by the decrease in hydrogen peroxide and malondialdehyde levels (p < 0.05). Meanwhile, lettuce biomass was significantly increased after addition of BCDM and BCPM compared to the single PVC treatment group (p < 0.05). This study provides a theoretical basis for finding solutions to alleviate the phytotoxicity of nanoplastics.
Collapse
Affiliation(s)
- Yufei Yu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Jia Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| |
Collapse
|
3
|
Gao J, Ge S, Wang H, Fang Y, Sun L, He T, Cheng X, Wang D, Zhou X, Cai H, Li C, Liu Y, E Y, Meng J, Chen W. Biochar-extracted liquor stimulates nitrogen related gene expression on improving nitrogen utilization in rice seedling. FRONTIERS IN PLANT SCIENCE 2023; 14:1131937. [PMID: 37404536 PMCID: PMC10317180 DOI: 10.3389/fpls.2023.1131937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/04/2023] [Indexed: 07/06/2023]
Abstract
Introduction Biochar has been shown to be an effective soil amendment for promoting plant growth and improving nitrogen (N) utilization. However, the physiological and molecular mechanisms behind such stimulation remain unclear. Methods In this study, we investigated whether biochar-extracted liquor including 21 organic molecules enhance the nitrogen use efficiency (NUE) of rice plants using two N forms (NH4 +-N and NO3 --N). A hydroponic experiment was conducted, and biochar-extracted liquor (between 1 and 3% by weight) was applied to rice seedlings. Results The results showed that biochar-extracted liquor significantly improved phenotypic and physiological traits of rice seedlings. Biochar-extracted liquor dramatically upregulated the expression of rice N metabolism-related genes such as OsAMT1.1, OsGS1.1, and OsGS2. Rice seedlings preferentially absorbed NH4 +-N than NO3 --N (p < 0.05), and the uptake of NH4 +-N by rice seedlings was significantly increased by 33.60% under the treatment of biochar-extracted liquor. The results from molecular docking showed that OsAMT1.1protein can theoretically interact with 2-Acetyl-5-methylfuran, trans-2,4-Dimethylthiane, S, S-dioxide, 2,2-Diethylacetamide, and 1,2-Dimethylaziridine in the biochar-extracted liquor. These four organic compounds have similar biological function as the OsAMT1.1 protein ligand in driving NH4 +-N uptakes by rice plants. Discussion This study highlights the importance of biochar-extracted liquor in promoting plant growth and NUE. The use of low doses of biochar-extracted liquor could be an important way to reduce N input in order to achieve the purpose of reducing fertilizer use and increasing efficiency in agricultural production.
Collapse
Affiliation(s)
- Jian Gao
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Shaohua Ge
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, China
| | - Yunying Fang
- Australian Rivers Institute, School of Environment and Science, Griffith University, Nathan, QLD, Australia
| | - Luming Sun
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Tianyi He
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Xiaoyi Cheng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Di Wang
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Xuanwei Zhou
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Heqing Cai
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Caibin Li
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Yanxiang Liu
- Bijie Tobacco Company of Guizhou Province, Bijie, China
| | - Yang E
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Jun Meng
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Wenfu Chen
- National Biochar Institute of Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, Shenyang, China
| |
Collapse
|
4
|
Cui X, Lou L, Zhang Y, Yan B. Study of the distribution of Glycyrrhiza uralensis production areas as well as the factors affecting yield and quality. Sci Rep 2023; 13:5160. [PMID: 36991024 PMCID: PMC10060575 DOI: 10.1038/s41598-023-31946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Wild licorice in China is mainly distributed in northern China, such as Gansu, Ningxia, and Inner Mongolia Provinces. The origin of wild licorice has varied among historical periods. The cultivated origin of planted licorice has the same as 59.26% of wild licorice. The distribution of cultivated licorice was shifted to the northwest relative to that of wild licorice. The yield and quality of cultivated licorice vary greatly from different origins, showing a certain pattern of variation from west to east. The same batch of licorice seedlings was planted at 8 sites overlapping the main licorice production areas in China. The yield and quality of licorice in the Baicheng experimental plot were low. The yield of licorice in the Jingtai and Altay experimental plots was high, but the quality was poor. The quality of licorice in Chifeng and Yuzhong experimental sites was high, but the yield was low. Principal component analysis of environmental and soil factors generated five characteristic roots with a cumulative contribution rate of 80%, three of which were related to soil and referred to as the soil charge factor, soil water factor, and soil nutrient factor, and the load coefficients of the water and nutrient factor were the largest. Soil conditions, especially water and nutrients, might have a substantial effect on the observed changes in the licorice production area. Generally, the regulation of water and nutrients merits special attention when selecting areas for the production and cultivation of licorice. This study can provide reference for the selection of cultivated licorice production areas and the research of high-quality cultivation techniques.
Collapse
Affiliation(s)
- Xinping Cui
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lin Lou
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Yan Zhang
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Binbin Yan
- State Key Laboratory and Breeding Base of Dao-di Herbs, Resource Center of Chinese Materia Medica China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
5
|
Effects of concentration-dependent graphene on maize seedling development and soil nutrients. Sci Rep 2023; 13:2650. [PMID: 36788265 PMCID: PMC9929218 DOI: 10.1038/s41598-023-29725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The long-term use of chemical fertilizers to maintain agricultural production has had various harmful effects on farmland and has greatly impacted agriculture's sustainable expansion. Graphene, a unique and effective nanomaterial, is used in plant-soil applications to improve plant nutrient uptake, reduce chemical fertilizer pollution by relieving inadequate soil nutrient conditions and enhance soil absorption of nutrient components. We investigated the effects of graphene amendment on nutrient content, maize growth, and soil physicochemical parameters. In each treatment, 5 graphene concentration gradients (0, 25, 50, 100, and 150 g kg-1) were applied in 2 different types (single-layer and few-layers, SL and FL). Soil aggregates, soil accessible nutrients, soil enzyme activity, plant nutrients, plant height, stem diameter, dry weight, and fresh weight were all measured throughout the maize growth to the V3 stage. Compared to the control (0 g kg-1), we found that graphene increased the percentage of large agglomerates (0.25-10 mm) in the soil and significantly increased the geometric mean diameter (GMD) and mean weight diameter (MWD) values of > 0.25 mm water-stable agglomerates as the increase of concentration. Soil available nutrient content (AN, AP, and AK) increased, peaking at 150 g kg-1. Graphene boosted nutrient absorption by maize plants, and aboveground total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents rose with the increasing application, which raised aboveground fresh weight, dry weight, plant height, and stalk thickness. The findings above confirmed our prediction that adding graphene to the soil may improve maize plant biomass by enhancing soil fertility and improving the soil environment. Given the higher manufacturing cost of single-layer graphene and the greater effect of few-layer graphene on soil and maize plants at the same concentration, single-layer graphene and few-layer graphene at a concentration of 50 g kg-1 were the optimal application rates.
Collapse
|
6
|
Martínez-Gómez Á, Poveda J, Escobar C. Overview of the use of biochar from main cereals to stimulate plant growth. FRONTIERS IN PLANT SCIENCE 2022; 13:912264. [PMID: 35982693 PMCID: PMC9378993 DOI: 10.3389/fpls.2022.912264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The total global food demand is expected to increase up to 50% between 2010 and 2050; hence, there is a clear need to increase plant productivity with little or no damage to the environment. In this respect, biochar is a carbon-rich material derived from the pyrolysis of organic matter at high temperatures with a limited oxygen supply, with different physicochemical characteristics that depend on the feedstock and pyrolysis conditions. When used as a soil amendment, it has shown many positive environmental effects such as carbon sequestration, reduction of greenhouse gas emissions, and soil improvement. Biochar application has also shown huge benefits when applied to agri-systems, among them, the improvement of plant growth either in optimal conditions or under abiotic or biotic stress. Several mechanisms, such as enhancing the soil microbial diversity and thus increasing soil nutrient-cycling functions, improving soil physicochemical properties, stimulating the microbial colonization, or increasing soil P, K, or N content, have been described to exert these positive effects on plant growth, either alone or in combination with other resources. In addition, it can also improve the plant antioxidant defenses, an evident advantage for plant growth under stress conditions. Although agricultural residues are generated from a wide variety of crops, cereals account for more than half of the world's harvested area. Yet, in this review, we will focus on biochar obtained from residues of the most common and relevant cereal crops in terms of global production (rice, wheat, maize, and barley) and in their use as recycled residues to stimulate plant growth. The harvesting and processing of these crops generate a vast number and variety of residues that could be locally recycled into valuable products such as biochar, reducing the waste management problem and accomplishing the circular economy premise. However, very scarce literature focused on the use of biochar from a crop to improve its own growth is available. Herein, we present an overview of the literature focused on this topic, compiling most of the studies and discussing the urgent need to deepen into the molecular mechanisms and pathways involved in the beneficial effects of biochar on plant productivity.
Collapse
Affiliation(s)
- Ángela Martínez-Gómez
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Jorge Poveda
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra, Pamplona, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Área de Fisiología Vegetal, Universidad de Castilla-La Mancha, Toledo, Spain
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Latini A, Fiorani F, Galeffi P, Cantale C, Bevivino A, Jablonowski ND. Phenotyping of Different Italian Durum Wheat Varieties in Early Growth Stage With the Addition of Pure or Digestate-Activated Biochars. FRONTIERS IN PLANT SCIENCE 2021; 12:782072. [PMID: 34987533 PMCID: PMC8721205 DOI: 10.3389/fpls.2021.782072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
This study aims to highlight the major effects of biochar incorporation into potting soil substrate on plant growth and performance in early growth stages of five elite Italian varieties of durum wheat (Triticum durum). The biochars used were obtained from two contrasting feedstocks, namely wood chips and wheat straw, by gasification under high temperature conditions, and were applied in a greenhouse experiment either as pure or as nutrient-activated biochar obtained by incubation with digestate. The results of the experiment showed that specific genotypes as well as different treatments with biochar have significant effects on plant response when looking at shoot traits related to growth. The evaluated genotypes could be clustered in two main distinct groups presenting, respectively, significantly increasing (Duilio, Iride, and Saragolla varieties) and decreasing (Marco Aurelio and Grecale varieties) values of projected shoot system area (PSSA), fresh weight (FW), dry weight (DW), and plant water loss by evapotranspiration (ET). All these traits were correlated with Pearson correlation coefficients ranging from 0.74 to 0.98. Concerning the treatment effect, a significant alteration of the mentioned plant traits was observed when applying biochar from wheat straw, characterized by very high electrical conductivity (EC), resulting in a reduction of 34.6% PSSA, 43.2% FW, 66.9% DW, and 36.0% ET, when compared to the control. Interestingly, the application of the same biochar after nutrient spiking with digestate determined about a 15-30% relief from the abovementioned reduction induced by the application of the sole pure wheat straw biochar. Our results reinforce the current basic knowledge available on biological soil amendments as biochar and digestate.
Collapse
Affiliation(s)
- Arianna Latini
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Fabio Fiorani
- Institute of Bio- and Geosciences, IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Patrizia Galeffi
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Cristina Cantale
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Annamaria Bevivino
- Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Rome, Italy
| | - Nicolai David Jablonowski
- Institute of Bio- and Geosciences, IBG-2, Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
8
|
Biochar Amendments Improve Licorice ( Glycyrrhiza uralensis Fisch.) Growth and Nutrient Uptake under Salt Stress. PLANTS 2021; 10:plants10102135. [PMID: 34685945 PMCID: PMC8539127 DOI: 10.3390/plants10102135] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023]
Abstract
Licorice (Glycyrrhiza uralensis Fisch.) is a salt and drought tolerant legume suitable for rehabilitating abandoned saline lands, especially in dry arid regions. We hypothesized that soil amended with maize-derived biochar might alleviate salt stress in licorice by improving its growth, nutrient acquisition, and root system adaptation. Experiments were designed to determine the effect of different biochar concentrations on licorice growth parameters, acquisition of C (carbon), nitrogen (N), and phosphorus (P) and on soil enzyme activities under saline and non-saline soil conditions. Pyrolysis char from maize (600 °C) was used at concentrations of 2% (B2), 4% (B4), and 6% (B6) for pot experiments. After 40 days, biochar improved the shoot and root biomass of licorice by 80 and 41% under saline soil conditions. However, B4 and B6 did not have a significant effect on shoot growth. Furthermore, increased nodule numbers of licorice grown at B4 amendment were observed under both non-saline and saline conditions. The root architectural traits, such as root length, surface area, project area, root volume, and nodulation traits, also significantly increased by biochar application at both B2 and B4. The concentrations of N and K in plant tissue increased under B2 and B4 amendments compared to the plants grown without biochar application. Moreover, the soil under saline conditions amended with biochar showed a positive effect on the activities of soil fluorescein diacetate hydrolase, proteases, and acid phosphomonoesterases. Overall, this study demonstrated the beneficial effects of maize-derived biochar on growth and nutrient uptake of licorice under saline soil conditions by improving nodule formation and root architecture, as well as soil enzyme activity.
Collapse
|