1
|
Cao Y, Yu H, Guo X, Lu Y, Li W, Fu F. Marker-Assisted Backcross Breeding of Drought-Tolerant Maize Lines Transformed by Vacuolar H +-Pyrophosphatase Gene ( AnVP1) from Ammopiptanthus nanus. PLANTS (BASEL, SWITZERLAND) 2025; 14:926. [PMID: 40265817 PMCID: PMC11945134 DOI: 10.3390/plants14060926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Maize is highly sensitive to water deficit but has high transpiration and biomass production, leading to a substantial water demand. Genetic engineering can overcome reproductive isolation and utilize drought-tolerant genes from distant species. Ammopiptanthus nanus is a relic of the Tertiary glaciation that can adapt to harsh environmental conditions. In our previous study, five maize homozygous T8 lines overexpressing the AnVP1 gene from Ammopiptanthus nanus were generated and showed the enhancement of drought tolerance. However, the recipient inbred line Zh-1 was poor in yield and agronomic performance. In the present study, the AnVP1 gene was backcrossed from donor parent L10 (one of the five T8 lines) into recurrent parent Chang 7-2 (one of the elite parents of the commercial hybrid Zhengdan 958). In total, 103 InDel markers were developed and used for assisted background selection. After two generations of foreground selection through glufosinate spraying, the detection of CP4 EPSP MAb1 strips, and the PCR amplification of the AnVP1 gene, along with the similarity of agronomic traits to the recurrent parent, and background selection assisted by these InDel markers, the transgenic AnVP1 gene became homozygous in the BC2 lines. The average recovery rate of the genetic background of the recurrent parent reached 74.80% in the BC1 population and 91.93% in the BC2 population, respectively. The results of RT-PCR and RT-qPCR indicated the stable expression of the AnVP1 gene in the two ultimately selected BC2F3 lines, BC2-36-12 and BC2-5-15. The drought tolerance of these two BC2F3 lines were significantly improved compared to the recurrent parent Chang 7-2, as revealed by their wilting phenotype and survival rate of seedlings. This improvement was related to the enhancement of water-retention ability, as indicated by higher RWC and the reduction in damage, as shown by the decrease in REL, MDA, and H2O2 under drought stress. The result of field evaluation in two arid and semi-arid environments indicated that the drought tolerance of Chang 7-2 was significantly improved. This study suggests that the improved Chang 7-2 can be crossed with Zheng 58 to develop the transgenic commercial hybrid Zhengdan 958.
Collapse
Affiliation(s)
| | | | | | | | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (X.G.); (Y.L.)
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China; (Y.C.); (X.G.); (Y.L.)
| |
Collapse
|
2
|
Lee YJ, Jung YJ, Kim JH, Jeong YS, Ku HK, Kim BH, Kim YJ, Kim JK, Kim YS, Kim JK, Ha SH. Molecular protocol to develop β-carotene-biofortified rice events via molecular optimization. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109051. [PMID: 39197421 DOI: 10.1016/j.plaphy.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024]
Abstract
Providing food with nutrition and functionality is crucial for sustaining human life. Rice (Oryza sativa L.) is a representative staple crop with high carbohydrate content but low amounts of essential amino acids, micronutrients, and carotenoids such as provitamin A. To improve the nutritional quality, rice endosperm was biofortified to accumulate carotenoids such as β-carotene through genetic engineering (i.e., using synthetic carotenoid biosynthetic genes, a nonmammalian viral polycistronic sequence, and an optimized promoter and transit peptide) and high-throughput rice transformation (approximately 300 transgenic plants per construct). To facilitate the safety assessment of genetically modified food, molecular characterization was performed to select elite lines equipped with a single intergenic insertion of T-DNA, high transgene expression, in this case leading to high carotenoid content, and with phenotypic and compositional substantial equivalence. In this study, we present β-carotene-biofortified rice event candidate lines eligible for commercial use and a disclosed molecular protocol for the development of biotech rice crops.
Collapse
Affiliation(s)
- Yeo Jin Lee
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Young Joo Jung
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Jin Hwa Kim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ye Sol Jeong
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyung-Keun Ku
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Byeong-Hoon Kim
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Ye Jin Kim
- Division of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jae Kwang Kim
- Division of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Youn Shic Kim
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Gyeongsang, 25354, Republic of Korea
| | - Ju-Kon Kim
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Gyeongsang, 25354, Republic of Korea
| | - Sun-Hwa Ha
- Graduate School of Green-Bio Science, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
3
|
Sudan J, Urwat U, Farooq A, Pakhtoon MM, Zaffar A, Naik ZA, Batool A, Bashir S, Mansoor M, Sofi PA, Sofi NUR, Shikari AB, Khan MK, Hossain MA, Henry RJ, Zargar SM. Explicating genetic architecture governing nutritional quality in pigmented rice. PeerJ 2023; 11:e15901. [PMID: 37719119 PMCID: PMC10501373 DOI: 10.7717/peerj.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Rice is one of the most important staple plant foods that provide a major source of calories and nutrients for tackling the global hunger index especially in developing countries. In terms of nutritional profile, pigmented rice grains are favoured for their nutritional and health benefits. The pigmented rice varieties are rich sources of flavonoids, anthocyanin and proanthocyanidin that can be readily incorporated into diets to help address various lifestyle diseases. However, the cultivation of pigmented rice is limited due to low productivity and unfavourable cooking qualities. With the advances in genome sequencing, molecular breeding, gene expression analysis and multi-omics approaches, various attempts have been made to explore the genetic architecture of rice grain pigmentation. In this review, we have compiled the current state of knowledge of the genetic architecture and nutritional value of pigmentation in rice based upon the available experimental evidence. Future research areas that can help to deepen our understanding and help in harnessing the economic and health benefits of pigmented rice are also explored.
Collapse
Affiliation(s)
- Jebi Sudan
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Uneeb Urwat
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asmat Farooq
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aaqif Zaffar
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Zafir Ahmad Naik
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Aneesa Batool
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Saika Bashir
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Madeeha Mansoor
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Najeebul Ul Rehman Sofi
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Jammu and Kashmir, India
| | - Asif B. Shikari
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Mohd. Kamran Khan
- Department of Soil Sciences and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, Queensland University, Brisbane, Australia
| | - Sajad Majeed Zargar
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
4
|
Melnick RL, Jarvis L, Hendley P, Garcia-Alonso M, Metzger MJ, Ramankutty N, Teem JL, Roberts A. GEnZ explorer: a tool for visualizing agroclimate to inform research and regulatory risk assessment. Transgenic Res 2023; 32:321-337. [PMID: 37278871 PMCID: PMC10409678 DOI: 10.1007/s11248-023-00354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023]
Abstract
Confined field trials (CFT) of genetically engineered (GE) crops are used to generate data to inform environmental risk assessments (ERA). ERAs are required by regulatory authorities before novel GE crops can be released for cultivation. The transportability of CFT data to inform risk assessment in countries other than those where the CFT was conducted has been discussed previously in an analysis showing that the primary difference between CFT locations potentially impacting trial outcomes is the physical environment, particularly the agroclimate. This means that data from trials carried out in similar agroclimates could be considered relevant and sufficient to satisfy regulatory requirements for CFT data, irrespective of the country where the CFTs are conducted. This paper describes the development of an open-source tool to assist in determining the transportability of CFT data. This tool provides agroclimate together with overall crop production information to assist regulators and applicants in making informed choices on whether data from previous CFTs can inform an environmental risk assessment in a new country, as well as help developers determine optimal locations for planning future CFTs. The GEnZ Explorer is a freely available, thoroughly documented, and open-source tool that allows users to identify the agroclimate zones that are relevant for the production of 21 major crops and crop categories or to determine the agroclimatic zone at a specific location. This tool will help provide additional scientific justification for CFT data transportability, along with spatial visualization, to help ensure regulatory transparency.
Collapse
Affiliation(s)
| | - Larissa Jarvis
- McGill University, 845 Sherbrooke Street West, Montréal, QC, Canada
| | - Paul Hendley
- Phasera Ltd., 7 Kenilworth Avenue, Bracknell, Berkshire, UK
| | | | - Marc J Metzger
- School of Geosciences, Geography and the Lived Environment, The University of Edinburgh, Edinburgh, Scotland
| | - Navin Ramankutty
- School of Public Policy and Global Affairs, The University of British Columbia, Vancouver, BC, Canada
| | - John L Teem
- Genetic Biocontrols LLC, Tallahassee, FL, USA
| | - Andrew Roberts
- Agriculture and Food Systems Institute, Washington, DC, USA.
| |
Collapse
|
5
|
Palanog AD, Nha CT, Descalsota-Empleo GIL, Calayugan MI, Swe ZM, Amparado A, Inabangan-Asilo MA, Hernandez JE, Sta. Cruz PC, Borromeo TH, Lalusin AG, Mauleon R, McNally KL, Swamy BPM. Molecular dissection of connected rice populations revealed important genomic regions for agronomic and biofortification traits. FRONTIERS IN PLANT SCIENCE 2023; 14:1157507. [PMID: 37035067 PMCID: PMC10073715 DOI: 10.3389/fpls.2023.1157507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Breeding staple crops with increased micronutrient concentration is a sustainable approach to address micronutrient malnutrition. We carried out Multi-Cross QTL analysis and Inclusive Composite Interval Mapping for 11 agronomic, yield and biofortification traits using four connected RILs populations of rice. Overall, MC-156 QTLs were detected for agronomic (115) and biofortification (41) traits, which were higher in number but smaller in effects compared to single population analysis. The MC-QTL analysis was able to detect important QTLs viz: qZn5.2, qFe7.1, qGY10.1, qDF7.1, qPH1.1, qNT4.1, qPT4.1, qPL1.2, qTGW5.1, qGL3.1 , and qGW6.1 , which can be used in rice genomics assisted breeding. A major QTL (qZn5.2 ) for grain Zn concentration has been detected on chromosome 5 that accounted for 13% of R2. In all, 26 QTL clusters were identified on different chromosomes. qPH6.1 epistatically interacted with qZn5.1 and qGY6.2 . Most of QTLs were co-located with functionally related candidate genes indicating the accuracy of QTL mapping. The genomic region of qZn5.2 was co-located with putative genes such as OsZIP5, OsZIP9, and LOC_OS05G40490 that are involved in Zn uptake. These genes included polymorphic functional SNPs, and their promoter regions were enriched with cis-regulatory elements involved in plant growth and development, and biotic and abiotic stress tolerance. Major effect QTL identified for biofortification and agronomic traits can be utilized in breeding for Zn biofortified rice varieties.
Collapse
Affiliation(s)
- Alvin D. Palanog
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
- PhilRice Negros Branch Station, Philippine Rice Research Institute, Murcia, Negros Occidental, Philippines
| | | | | | - Mark Ian Calayugan
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Zin Mar Swe
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Amery Amparado
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Mary Ann Inabangan-Asilo
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Jose E. Hernandez
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Pompe C. Sta. Cruz
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Teresita H. Borromeo
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Antonio G. Lalusin
- College of Agriculture and Food Science, University of the Philippines, Los Baños, Laguna, Philippines
| | - Ramil Mauleon
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
- College of Agriculture, University of Southern Mindanao, Kabacan, North Cotabato, Philippines
| | - Kenneth L. McNally
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| | - B. P. Mallikarjuna Swamy
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Laguna, Philippines
| |
Collapse
|
6
|
Bin Rahman ANMR, Zhang J. Trends in rice research: 2030 and beyond. Food Energy Secur 2022. [DOI: 10.1002/fes3.390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
| | - Jianhua Zhang
- Department of Biology Hong Kong Baptist University Hong Kong China
- State Key Laboratory of Agrobiotechnology The Chinese University of Hong Kong Hong Kong China
| |
Collapse
|