1
|
Khalid MZ, Liu J, Zhang J, Yang L, Sun Z, Zhong G. Pyriproxyfen enhances germline stem cell proliferation and reduces reproduction in Drosophila by up-regulating juvenile hormone signaling. PEST MANAGEMENT SCIENCE 2024; 80:5099-5111. [PMID: 38865711 DOI: 10.1002/ps.8234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/01/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Pyriproxyfen is an insect growth regulator (IGR) that is effective against various types of insect pests. However, the molecular mechanism underlying pyriproxyfen effects on insect reproduction remains unclear. Thus, in this study, we attempted to uncover the mechanisms underlying the impact of pyriproxyfen on the reproductive system of the model organism Drosophila melanogaster. RESULTS A significant decrease in Drosophila reproduction was observed after pyriproxyfen treatment. The juvenile hormone (JH) titer was significantly increased (120.4%) in the ovary samples of pyriproxyfen-treated flies. Likewise, the concentrations of key enzymes and the expression of key genes related to the JH signaling pathway were also increased in the pyriproxyfen-treated group compared with the control group. Furthermore, pyriproxyfen treatment significantly increased (15.6%) the number of germline stem cells (GSCs) and significantly decreased (17%) the number of cystoblasts (CBs). However, no significant differences were observed in the number of somatic cells. We performed RNA interference (RNAi) on five key genes (Met, Tai, gce, ftz-f1, and hairy) related to the JH signaling pathway in germ cells using the germ cell-specific Gal4 driver. Interestingly, RNAi of the selected genes significantly decreased the number of both GSCs and CBs in pyriproxyfen-treated transgenic flies. These results further validate that pyriproxyfen enhances GSC proliferation by up-regulating JH signaling. CONCLUSION Our results indicate that pyriproxyfen significantly decreases reproduction by affecting germ cells in female adult ovaries. The effect of pyriproxyfen on germ cell proliferation and differentiation is mediated by an increase in JH signaling. This study has significant implications for optimizing pest control strategies, developing sustainable agriculture practices, and understanding the mechanism of insecticide action. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad Zaryab Khalid
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jin Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Jing Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Zhipeng Sun
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, P. R. China
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, P. R. China
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Guangzhou, P. R. China
| |
Collapse
|
2
|
Guo H, Jia N, Chen H, Xie D, Chi D. Preliminary Analysis of Transcriptome Response of Dioryctria sylvestrella (Lepidoptera: Pyralidae) Larvae Infected with Beauveria bassiana under Short-Term Starvation. INSECTS 2023; 14:insects14050409. [PMID: 37233037 DOI: 10.3390/insects14050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The Dioryctria genus contains several destructive borer pests that are found in coniferous forests in the Northern Hemisphere. Beauveria bassiana spore powder was tested as a new method of pest control. In this study, Dioryctria sylvestrella (Lepidoptera: Pyralidae) was used as the object. A transcriptome analysis was performed on a freshly caught group, a fasting treatment control group, and a treatment group inoculated with a wild B. bassiana strain, SBM-03. Under the conditions of 72-h fasting and a low temperature of 16 ± 1 °C, (i) in the control group, 13,135 of 16,969 genes were downregulated. However, in the treatment group, 14,558 of 16,665 genes were upregulated. (ii) In the control group, the expression of most genes in the upstream and midstream of the Toll and IMD pathways was downregulated, but 13 of the 21 antimicrobial peptides were still upregulated. In the treatment group, the gene expression of almost all antimicrobial peptides was increased. Several AMPs, including cecropin, gloverin, and gallerimycin, may have a specific inhibitory effect on B. bassiana. (iii) In the treatment group, one gene in the glutathione S-transferase system and four genes in the cytochrome P450 enzyme family were upregulated, with a sharp rise in those that were upregulated significantly. In addition, most genes of the peroxidase and catalase families, but none of the superoxide dismutase family were upregulated significantly. Through innovative fasting and lower temperature control, we have a certain understanding of the specific defense mechanism by which D. sylvestrella larvae may resist B. bassiana in the pre-wintering period. This study paves the way for improving the toxicity of B. bassiana to Dioryctria spp.
Collapse
Affiliation(s)
- Hongru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Niya Jia
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Huanwen Chen
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dan Xie
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|