1
|
Jin T, Wu C, Huang Z, Zhang X, Li S, Ding C, Long W. The Aldehyde Dehydrogenase Superfamily in Brassica napus L.: Genome-Wide Identification and Expression Analysis Under Low-Temperature Conditions. Int J Mol Sci 2025; 26:2373. [PMID: 40076992 PMCID: PMC11901046 DOI: 10.3390/ijms26052373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
The Aldehyde Dehydrogenase (ALDH) superfamily comprises a group of NAD+ or NADP+-dependent enzymes that play essential roles in responding to abiotic stresses in plants. In Brassica napus L., however, the increasing frequency of extremely low temperatures during winter in recent years has significantly affected both yield and quality. This study conducted a genome-wide screening of ALDH superfamily genes, analyzing their gene structures, evolutionary relationships, protein physicochemical properties, and expression patterns under low-temperature stress to explore the function of the ALDH superfamily gene in cold tolerance in Brassica napus L. A total of six BnALDH genes with significant differences in expression levels were verified utilizing quantitative real-time polymerase chain reaction (qRT-PCR), revealing that BnALDH11A2, BnALDH7B2, BnALDH3F5, BnALDH12A3, BnALDH2B6, and BnALDH7B3 all exhibited higher expression in cold-tolerant material 24W233 compared with cold-sensitive material 24W259. Additionally, a single nucleotide polymorphism (SNP) in the BnALDH11A2 promoter region shows differences between the cold-tolerant (24W233) and the cold-sensitive (24W259) Brassica napus varieties, and it may be associated with the cold tolerance of these two varieties. This comprehensive analysis offers valuable insights into the role of ALDH family genes in low-temperature stress adaptation in Brassica napus and offers genetic resources for the development of novel cold-tolerant cultivars.
Collapse
Affiliation(s)
- Ting Jin
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (C.D.)
| | - Chunhua Wu
- College of Agronomy, Nanjing Agricultural University, Nanjing 211800, China;
| | - Zhen Huang
- College of Agronomy, Northwest A&F University, Xianyang 712100, China;
| | - Xingguo Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China;
| | - Shimeng Li
- Institute of Agriculture, Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 850032, China;
| | - Chao Ding
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (C.D.)
| | - Weihua Long
- College of Rural Revitalization, Jiangsu Open University, Nanjing 210036, China; (T.J.); (C.D.)
| |
Collapse
|
2
|
Li P, Wang J, Jiang D, Yu A, Sun R, Liu A. Function and Characteristic Analysis of Candidate PEAR Proteins in Populus yunnanensis. Int J Mol Sci 2023; 24:13101. [PMID: 37685908 PMCID: PMC10488302 DOI: 10.3390/ijms241713101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
PEAR proteins are a type of plant-specific DNA binding with one finger (Dof) transcription factors that play a key role in the regulation of plant growth, especially during phloem cell growth and seed germination in Arabidopsis. However, the identification, characteristics and function of PEAR proteins, particularly in woody plants, need to be further studied. In the present study, 43 candidate PEAR proteins harboring the conserved Zf-Dof domain were obtained in Populus yunnanensis. Based on phylogenetic and structural analysis, 10 representative PEAR candidates were selected, belonging to different phylogenetic groups. The functions of PEAR proteins in the stress response, signal transduction, and growth regulation of stem cambium and roots undergoing vigorous cell division in Arabidopsis were revealed based on their expression patterns as characterized by qRT-PCR analysis, in accordance with the results of cis-element analysis. In vitro experiments showed that the interaction of transcription factor (E2F) and cyclin indirectly reflects the growth regulation function of PEAR through light signaling and cell-cycle regulation. Therefore, our results provide new insight into the identity of PEAR proteins and their function in stress resistance and vigorous cell division regulation of tissues in P. yunnanensis, which may serve as a basis for further investigation of the functions and characteristics of PEAR proteins in other plants.
Collapse
Affiliation(s)
- Ping Li
- Correspondence: (P.L.); (A.L.)
| | | | | | | | | | - Aizhong Liu
- Key Laboratory for Forest Resource Conservation and Utilization in the Southwest Mountains of China (Ministry of Education), College of Forestry, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
3
|
Qiao H, Jiao B, Wang J, Yang Y, Yang F, Geng Z, Zhao G, Liu Y, Dong F, Wang Y, Zhou S. Comparative Analysis of miRNA Expression Profiles under Salt Stress in Wheat. Genes (Basel) 2023; 14:1586. [PMID: 37628637 PMCID: PMC10454085 DOI: 10.3390/genes14081586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Salt stress is one of the important environmental factors that inhibit the normal growth and development of plants. Plants have evolved various mechanisms, including signal transduction regulation, physiological regulation, and gene transcription regulation, to adapt to environmental stress. MicroRNAs (miRNAs) play a role in regulating mRNA expression. Nevertheless, miRNAs related to salt stress are rarely reported in bread wheat (Triticum aestivum L.). In this study, using high-throughput sequencing, we analyzed the miRNA expression profile of wheat under salt stress. We identified 360 conserved and 859 novel miRNAs, of which 49 showed considerable changes in transcription levels after salt treatment. Among them, 25 were dramatically upregulated and 24 were downregulated. Using real-time quantitative PCR, we detected significant changes in the relative expression of miRNAs, and the results showed the same trend as the sequencing data. In the salt-treated group, miR109 had a higher expression level, while miR60 and miR202 had lower expression levels. Furthermore, 21 miRNAs with significant changes were selected from the differentially expressed miRNAs, and 1023 candidate target genes were obtained through the prediction of the website psRNATarget. Gene ontology (GO) analysis of the candidate target genes showed that the expressed miRNA may be involved in the response to biological processes, molecular functions, and cellular components. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis confirmed their important functions in RNA degradation, metabolic pathways, synthesis pathways, peroxisome, environmental adaptation, global and overview maps, and stress adaptation and the MAPK signal pathway. These findings provide a basis for further exploring the function of miRNA in wheat salt tolerance.
Collapse
Affiliation(s)
- Hualiang Qiao
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| | - Bo Jiao
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| | - Jiao Wang
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| | - Yang Yang
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| | - Fan Yang
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| | - Zhao Geng
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Guiyuan Zhao
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yongwei Liu
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| | - Fushuang Dong
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| | - Yongqiang Wang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Shuo Zhou
- Plant Genetic Engineering Center of Hebei Province, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (H.Q.); (B.J.)
| |
Collapse
|
4
|
Genome-Wide Identification of the Eucalyptus urophylla GATA Gene Family and Its Diverse Roles in Chlorophyll Biosynthesis. Int J Mol Sci 2022; 23:ijms23095251. [PMID: 35563644 PMCID: PMC9102942 DOI: 10.3390/ijms23095251] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
GATA transcription factors have been demonstrated to play key regulatory roles in plant growth, development, and hormonal response. However, the knowledge concerning the evolution of GATA genes in Eucalyptus urophylla and their trans-regulatory interaction is indistinct. Phylogenetic analysis and study of conserved motifs, exon structures, and expression patterns resolved the evolutionary relationships of these GATA proteins. Phylogenetic analysis showed that EgrGATAs are broadly distributed in four subfamilies. Cis-element analysis of promoters revealed that EgrGATA genes respond to light and are influenced by multiple hormones and abiotic stresses. Transcriptome analysis revealed distinct temporal and spatial expression patterns of EgrGATA genes in various tissues of E. urophylla S.T.Blake, which was confirmed by real-time quantitative PCR (RT-qPCR). Further research revealed that EurGNC and EurCGA1 were localized in the nucleus, and EurGNC directly binds to the cis-element of the EurGUN5 promoter, implying its potential roles in the regulation of chlorophyll synthesis. This comprehensive study provides new insights into the evolution of GATAs and could help to improve the photosynthetic assimilation and vegetative growth of E. urophylla at the genetic level.
Collapse
|