1
|
Zhang X, Yu H, Sun P, Huang M, Li B. Antiviral Effects and Mechanisms of Active Ingredients in Tea. Molecules 2024; 29:5218. [PMID: 39519859 PMCID: PMC11547931 DOI: 10.3390/molecules29215218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Viruses play a significant role in human health, as they can cause a wide range of diseases, from mild illnesses to severe and life-threatening conditions. Cellular and animal experiments have demonstrated that the functional components in tea, such as catechins, theaflavins, theanine, and caffeine, exhibit significant inhibitory effects on a diverse array of viruses, including influenza, rotavirus, hepatitis, HPV, and additional types. The inhibition mechanisms may involve blocking virus-host recognition, interfering with viral replication, enhancing host immune responses, and inhibiting viral enzyme activity. This article reviews the research progress on the antiviral effects of tea's functional components and their related mechanisms, hoping to contribute to future studies in this field.
Collapse
Affiliation(s)
- Xinghai Zhang
- Modern Service Industry Research Institute, Zhejiang Shuren University, Hangzhou, 310015, China;
| | - Haonan Yu
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| | - Panjie Sun
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| | - Mengxin Huang
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| | - Bo Li
- Department of Tea Science, Zhejiang University, Hangzhou 310058, China; (H.Y.); (P.S.); (M.H.)
| |
Collapse
|
2
|
Gupta A, Kang K, Pathania R, Saxton L, Saucedo B, Malik A, Torres-Tiji Y, Diaz CJ, Dutra Molino JV, Mayfield SP. Harnessing genetic engineering to drive economic bioproduct production in algae. Front Bioeng Biotechnol 2024; 12:1350722. [PMID: 38347913 PMCID: PMC10859422 DOI: 10.3389/fbioe.2024.1350722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Our reliance on agriculture for sustenance, healthcare, and resources has been essential since the dawn of civilization. However, traditional agricultural practices are no longer adequate to meet the demands of a burgeoning population amidst climate-driven agricultural challenges. Microalgae emerge as a beacon of hope, offering a sustainable and renewable source of food, animal feed, and energy. Their rapid growth rates, adaptability to non-arable land and non-potable water, and diverse bioproduct range, encompassing biofuels and nutraceuticals, position them as a cornerstone of future resource management. Furthermore, microalgae's ability to capture carbon aligns with environmental conservation goals. While microalgae offers significant benefits, obstacles in cost-effective biomass production persist, which curtails broader application. This review examines microalgae compared to other host platforms, highlighting current innovative approaches aimed at overcoming existing barriers. These approaches include a range of techniques, from gene editing, synthetic promoters, and mutagenesis to selective breeding and metabolic engineering through transcription factors.
Collapse
Affiliation(s)
- Abhishek Gupta
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ruchi Pathania
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Lisa Saxton
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Barbara Saucedo
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Ashleyn Malik
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Crisandra J. Diaz
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - João Vitor Dutra Molino
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Laboratory, Department of Molecular Biology, School of Biological Sciences, University of California San Diego, San Diego, CA, United States
- California Center for Algae Biotechnology, University of California San Diego, San Diego, CA, United States
| |
Collapse
|
3
|
Çakmak R, Uzuner U. Functional and Extracellular Production and Antitumor Activity of Mouse Alpha Klotho in Model Microalga Chlamydomonas reinhardtii. Chem Biodivers 2024; 21:e202301255. [PMID: 37997005 DOI: 10.1002/cbdv.202301255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Klotho is a human protein with versatile functions associated with longevity and well-being. α-Klotho (α-KL) deficiency in the circulatory system is associated with reduced life expectancy with numerous disorders such as chronic kidney disease, atherosclerosis, infertility, skin atrophy, emphysema, and osteoporosis. The antagonistic effects of Klotho protein against intractable cancers have also been well documented over the past two decades. In addition, recent findings have also illuminated the importance of soluble Klotho during cognitive development, oxidative stress, cellular apoptosis, and neurodegenerative disorders. The low-cost and sustainable production of alpha Klotho protein is extremely important for its widespread use against different diseases. Here, we report heterologous, functional, and extracellular production of mouse α-KL (mα-KL) protein in model microalga Chlamydomonas reinhardtii. The secretion of mα-KL into the extracellular environment facilitated downstream processes and warranted low-cost purification in high-titer. Furthermore, the anticarcinogenic efficiency of recombinant mα-KL was examined and validated on Rattus norvegicus AR42J pancreas tumors. Microalgae-based photosynthetic, low-cost, and scalable production of mα-KL could be used to develop a variety of cosmetics, pharmaceuticals, and wellness products, all aimed at serving health and well-being.
Collapse
Affiliation(s)
- Ramazan Çakmak
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Ugur Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Dávalos-Guzmán SD, Martinez-Gutierrez F, Martínez-González L, Quezada-Rivera JJ, Lorenzo-Leal AC, Bach H, Morales-Domínguez JF, Soria-Guerra RE. Antimicrobial activity of the Flo peptide produced in Scenedesmus acutus and Nannochloropsis oculata. World J Microbiol Biotechnol 2023; 39:211. [PMID: 37249711 DOI: 10.1007/s11274-023-03664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/24/2023] [Indexed: 05/31/2023]
Abstract
The continuous increase of bacterial pathogen resistance to conventional antibiotics has challenged the research community to develop new antimicrobial strategies. Antimicrobial peptides (AMP) are a promising alternative to combat multidrug-resistant strains compared to conventional antibiotics because of their biocompatibility. In the present study, the Flo peptide, an AMP from the Moringa oleifera tree, was expressed in the chloroplast of the microalgae Nannochloropsis oculata and Scenedesmus acutus. The transgene insertion was verified by PCR amplification, and the homoplasmy was corroborated in spectinomycin-resistant lines. The identification and quantification of the peptide were performed using ELISA. The antimicrobial activity was studied against the Gram-negative Escherichia coli (ATCC 25,922) and Klebsiella pneumoniae (ATCC 700,603). The inflammatory response of the total soluble proteins of transplastomic N. oculata was assessed by measuring secretion of the cytokines IL-6, IL-10, and alpha-tumor necrosis (TNF-α), and cytotoxicity was assessed. These results provide a potential strategy to produce the Flo peptide in microalgae with antibacterial activities.
Collapse
Affiliation(s)
- Saraí Damaris Dávalos-Guzmán
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México
| | - Fidel Martinez-Gutierrez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Luzmila Martínez-González
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México
| | - Jesús Josafath Quezada-Rivera
- Universidad Juárez del Estado de Durango, Av. Universidad s/n, Fracc. Filadelfia, Gómez Palacio, Durango, CP. 35010, México
| | - Ana Cecilia Lorenzo-Leal
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Horacio Bach
- Division of Infectious Diseases, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - José Francisco Morales-Domínguez
- Universidad Autónoma de Aguascalientes, Av. Universidad No. 940, Ciudad Universitaria, Aguascalientes, Aguascalientes, C.P. 20100, México
| | - Ruth Elena Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava No.6, Zona Universitaria, San Luis Potosí, C.P. 78210, México.
| |
Collapse
|
5
|
Akram M, Khan MA, Ahmed N, Bhatti R, Pervaiz R, Malik K, Tahir S, Abbas R, Ashraf F, Ali Q. Cloning and expression of an anti-cancerous cytokine: human IL-29 gene in Chlamydomonas reinhardtii. AMB Express 2023; 13:23. [PMID: 36840830 PMCID: PMC9968364 DOI: 10.1186/s13568-023-01530-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Green algae, Chlamydomonas reinhardtii, with low cultivation cost, absence of endotoxins and insusceptibility to human pathogens is emerging as a potential system for the future production of recombinant proteins. The recent development of molecular tools enabling recombinant protein expression in algae chloroplast has provided new research and advance opportunities for developing low-cost therapeutic proteins. In the present study, algae chloroplast expression system was evaluated for the recombinant production of an anti-cancerous therapeutic protein, Interleukin 29 (IL29). The IL29 gene was cloned into algae chloroplast expression vector (pSRSapI). After the transformation, the positive clones were screened for homoplasmy and the presence of the IL29 gene by spot test and PCR analysis, respectively. The expressed SDS-PAGE and western blotting assay characterized IL-29. The algae expressed IL-29 was biologically active in an anti-proliferating bioassay using HepG2 cells. The results suggest that the Chlamydomonas reinhardtii expression system is convenient, low-cost, eco-friendly, and safe to express IL29.
Collapse
Affiliation(s)
- Maham Akram
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Mohsin Ahmad Khan
- Centre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan.
| | - Nadeem Ahmed
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Rashid Bhatti
- Centre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan.
| | - Rabbia Pervaiz
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Kausar Malik
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Saad Tahir
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Rabia Abbas
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Fareeha Ashraf
- grid.11173.350000 0001 0670 519XCentre for Excellence in Molecular Biology (CEMB), University of the Punjab, 87-West Canal Bank Road Thokar Niaz Baig, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Agamennone M, Fantacuzzi M, Vivenzio G, Scala MC, Campiglia P, Superti F, Sala M. Antiviral Peptides as Anti-Influenza Agents. Int J Mol Sci 2022; 23:11433. [PMID: 36232735 PMCID: PMC9569631 DOI: 10.3390/ijms231911433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Influenza viruses represent a leading cause of high morbidity and mortality worldwide. Approaches for fighting flu are seasonal vaccines and some antiviral drugs. The development of the seasonal flu vaccine requires a great deal of effort, as careful studies are needed to select the strains to be included in each year's vaccine. Antiviral drugs available against Influenza virus infections have certain limitations due to the increased resistance rate and negative side effects. The highly mutative nature of these viruses leads to the emergence of new antigenic variants, against which the urgent development of new approaches for antiviral therapy is needed. Among these approaches, one of the emerging new fields of "peptide-based therapies" against Influenza viruses is being explored and looks promising. This review describes the recent findings on the antiviral activity, mechanism of action and therapeutic capability of antiviral peptides that bind HA, NA, PB1, and M2 as a means of countering Influenza virus infection.
Collapse
Affiliation(s)
- Mariangela Agamennone
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Marialuigia Fantacuzzi
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giovanni Vivenzio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Carmina Scala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Fabiana Superti
- National Centre for Innovative Technologies in Public Health, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Marina Sala
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| |
Collapse
|