1
|
Chetverikov S, Kuzina E, Feoktistova A, Timergalin M, Rameev T, Bakaeva M, Zaitsev G, Davydychev A, Korshunova T. Mitigation of the Negative Effect of Drought and Herbicide Treatment on Growth, Yield, and Stress Markers in Bread Wheat as a Result of the Use of the Plant Growth Regulator Azolen ®. PLANTS (BASEL, SWITZERLAND) 2024; 13:2297. [PMID: 39204733 PMCID: PMC11359348 DOI: 10.3390/plants13162297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/28/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Most chemical pesticides, in addition to their main functions (protection against diseases, weeds, and pests), also have a noticeable inhibitory effect on target crops. In a laboratory experiment and two-year field experiments (Russia, Trans-Urals), a study was made of the effect of the biopreparation Azolen® (Azotobacter vinelandii IB-4) on plants of the Ekada 113 wheat variety under conditions of drought and stress caused by the exposure to the herbicide Chistalan (2.4-D and dicamba). The biopreparation and the herbicide were used separately and together on wheat during the tillering phase. Treatment with the biological preparation under stressful conditions had a significant effect on the hormonal balance of plants (a decrease in the amount of abscisic acid and a normalization of the balance of indolyl-3-acetic acid and cytokinins in shoots and roots of plants was noted), while the osmoprotective, antioxidant, and photosynthetic systems of plants were activated. In drought conditions, the treatment of plants with biological preparation prevented the inhibition of root growth caused by the use of the herbicide. This, in turn, improved the absorption of water by plants and ensured an increase in wheat yield (1.6 times). The results obtained give reason to believe that microbiological preparations can be used as antidotes that weaken the phytotoxic effect of herbicidal treatments, including in drought conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gleb Zaitsev
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa 450054, Russia; (S.C.); (E.K.); (A.F.); (M.T.); (T.R.); (M.B.); (A.D.); (T.K.)
| | | | | |
Collapse
|
2
|
Dolui D, Hasanuzzaman M, Fujita M, Adak MK. 2,4-D mediated moderation of aluminum tolerance in Salvinia molesta D. Mitch. with regards to bioexclusion and related physiological and metabolic changes. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:27-44. [PMID: 37259532 DOI: 10.1080/15226514.2023.2216311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We examined the efficacy of 2,4-dichlorophenoxy acetic acid (2,4-D; 500 µM) in enhancing the potential of Salvinia species for tolerance to aluminum (Al) toxicity (240 and 480 µM, seven days). Salvinia showed better efficacy in removal of toxicity of Al by sorption mechanism with changes of bond energy shifting on cell wall residues and surface structure. Plants recorded tolerance to Al concentration (480 µM) when pretreated with 2,4-D through adjustment of relative water content, proline content, osmotic potential, and improved the pigment fluorescence for energy utilization under Al stress. Photosynthetic activities with regards to NADP-malic enzyme and malic dehydrogenase and sugar metabolism with wall and cytosolic invertase activities were strongly correlated with compatible solutes. A less membrane peroxidation and protein carbonylation had reduced ionic loss over the membrane that was studied with reduced electrolyte leakage with 2,4-D pretreated plants. Membrane stabilization was also recorded with higher ratio of K+ to Na+, thereby suggesting roles of 2,4-D in ionic balance. Better sustenance of enzymatic antioxidation with peroxidase and glutathione metabolism reduced reactive oxygen species accumulation and save the plant for oxidative damages. Moreover, gene polymorphism for antioxidant, induced by 2,4-D varied through Al concentrations would suggest an improved biomarker for tolerance. Collectively, analysis and discussion of plant's responses assumed that auxin herbicide could be a potential phytoprotectant for Salvinia as well as improving the stability to Al toxicity and its bioremediation efficacy.
Collapse
Affiliation(s)
- Debabrata Dolui
- Department of Botany, Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, University of Kalyani, Kalyani, India
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Takamatsu, Japan
| | - Malay Kumar Adak
- Department of Botany, Plant Physiology, Biochemistry and Plant Molecular Biology Research Unit, University of Kalyani, Kalyani, India
| |
Collapse
|
3
|
Dong C, Zhang L, Zhang Q, Yang Y, Li D, Xie Z, Cui G, Chen Y, Wu L, Li Z, Liu G, Zhang X, Liu C, Chu J, Zhao G, Xia C, Jia J, Sun J, Kong X, Liu X. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun 2023; 14:836. [PMID: 36788238 PMCID: PMC9929037 DOI: 10.1038/s41467-023-36271-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/23/2023] [Indexed: 02/16/2023] Open
Abstract
Wheat (Triticum aestivum L.) is a major staple food for more than one-third of the world's population. Tiller number is an important agronomic trait in wheat, but only few related genes have been cloned. Here, we isolate a wheat mutant, tiller number1 (tn1), with much fewer tillers. We clone the TN1 gene via map-based cloning: TN1 encodes an ankyrin repeat protein with a transmembrane domain (ANK-TM). We show that a single amino acid substitution in the third conserved ankyrin repeat domain causes the decreased tiller number of tn1 mutant plants. Resequencing and haplotype analysis indicate that TN1 is conserved in wheat landraces and modern cultivars. Further, we reveal that the expression level of the abscisic acid (ABA) biosynthetic gene TaNCED3 and ABA content are significantly increased in the shoot base and tiller bud of the tn1 mutants; TN1 but not tn1 could inhibit the binding of TaPYL to TaPP2C via direct interaction with TaPYL. Taken together, we clone a key wheat tiller number regulatory gene TN1, which promotes tiller bud outgrowth probably through inhibiting ABA biosynthesis and signaling.
Collapse
Affiliation(s)
- Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yuxin Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoqing Cui
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaoyu Chen
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifen Wu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueying Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cuimei Liu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Innovation Academy for Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiaqiang Sun
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xu Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
4
|
Yu H, Guo X, Cui H, Chen J, Li X. Metabolism Difference Is Involved in Mesosulfuron-Methyl Selectivity between Aegilops tauschii and Triticum aestivum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:186-196. [PMID: 36534090 DOI: 10.1021/acs.jafc.2c05809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The acetolactate synthase (ALS) inhibitor mesosulfuron-methyl is currently the only selective herbicide to control Aegilops tauschii in wheat fields; however, the mechanism underlying this selectivity remains unclear. Results showed that the tolerance of Triticum aestivum to mesosulfuron-methyl was much higher than that of A. tauschii. Mesosulfuron-methyl inhibited the in vitro ALS activity of A. tauschii and T. aestivum similarly, but the predicted structural interactions of ALS with mesosulfuron-methyl and induced expression of als were different in the two species. Compared with T. aestivum, A. tauschii was found to absorb more mesosulfuron-methyl and metabolize much less mesosulfuron-methyl. The cytochrome P450 monooxygenase (CYP450) inhibitor, malathion, greatly increased the sensitivity of T. aestivum to mesosulfuron-methyl, while its synergistic effect was smaller in A. tauschii. Finally, 19 P450 genes were selected as candidate genes related with metabolism-based mesosulfuron-methyl selectivity. Collectively, different sensitivities to mesosulfuron-methyl in the two species were likely to be attributed to metabolism variances.
Collapse
Affiliation(s)
- Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaotong Guo
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
5
|
Bakaeva M, Chetverikov S, Timergalin M, Feoktistova A, Rameev T, Chetverikova D, Kenjieva A, Starikov S, Sharipov D, Hkudaygulov G. PGP-Bacterium Pseudomonas protegens Improves Bread Wheat Growth and Mitigates Herbicide and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:3289. [PMID: 36501327 PMCID: PMC9735837 DOI: 10.3390/plants11233289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The reaction of plants to simultaneous stress action and treatment with biological stimulants still remains poorly studied. Laboratory and field experiments have been conducted to study the growth and yield of bread wheat (Triticum aestivum L.) of the variety Ekada 113; stress markers and quantitative ratios of phytohormones in plants under insufficient soil moisture; the effects of spraying with herbicide containing 2,4-D and dicamba and growth-stimulating bacterium Pseudomonas protegens DA1.2; and combinations of these factors. Under water shortage conditions, spraying plants with Chistalan reduced their growth compared to non-sprayed plants, which was associated with inhibition of root growth and a decrease in the content of endogenous auxins in the plants. Under conditions of combined stress, the treatment of plants with the strain P. protegens DA1.2 increased the IAA/ABA ratio and prevented inhibition of root growth by auxin-like herbicide, ensuring water absorption by the roots as well as increased transpiration. As a result, the content of malondialdehyde oxidative stress marker was reduced. Bacterization improved the water balance of wheat plants under arid field conditions. The addition of bacterium P. protegens DA1.2 to the herbicide Chistalan increased relative water content in wheat leaves by 11% compared to plants treated with herbicide alone. Application of the bacterial strain P. protegens DA1.2 increased the amount of harvested grain from 2.0-2.2 t/ha to 3.2-3.6 t/ha. Thus, auxin-like herbicide Chistalan and auxin-producing bacterium P. protegens DA1.2 may affect the balance of phytohormones in different ways. This could be the potential reason for the improvement in wheat plants' growth during dry periods when the bacterium P. protegens DA1.2 is included in mixtures for weed control.
Collapse
|
6
|
Yang J, Yu H, Cui H, Chen J, Li X. PsbA gene over-expression and enhanced metabolism conferring resistance to atrazine in Commelina communis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105260. [PMID: 36464365 DOI: 10.1016/j.pestbp.2022.105260] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/25/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Commelina communis L. is a troublesome weed in agronomic fields and increasingly threatens the yield security of corn in north-eastern China. Previously, we found that a C. communis population (JL-1) has evolved resistance to atrazine. Although the potential genetic and enzymic differences contributing to atrazine resistance in this population have been investigated, the specific molecular mechanisms underlying C. communis resistance are still poorly understood. Here, the expression level of the target gene PsbA and the non-target-site resistance (NTSR) mechanism for this population were studied. The results showed that the decline in chlorophyll content in JL-1 leaves was less than in the susceptible JS-10 population following atrazine treatment. JL-1 exhibited an enhanced expression of the PsbA gene compared with JS-10 of 7.28- and 14.28-fold higher at 0 and 24 h after treatment with atrazine, respectively. The cytochrome P450 monooxygenase (P450) inhibitor piperonyl butoxide (PBO) increased the phytotoxicity of atrazine in both populations of C. communis. Seven candidate genes associated with NTSR of Jl-1 were identified through RNA-seq and validated by quantitative real-time PCR, including 5 upregulated genes involved in herbicide metabolism. In addition, the activities of glutathione S-transferases and P450s in JL-1 were increased compared with JS-10. Collectively, PsbA gene overexpression and enhanced metabolism are likely to be responsible for JL-1 resistance to atrazine.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Hebei Key Laboratory of Crop Stress Biology (in Preparation), Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Haiyan Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hailan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingchao Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangju Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|