1
|
Li Y, Tan B, Yang J, Zhang H, Zhu W, Xu L, Cheng Y, Wang Y, Zeng J, Sha L, Zhang H, Fan X, Zhou Y, Wu D, Kang H. Integrated review of Psathyrostachy huashanica: From phylogenetic research to wheat breeding application. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:42. [PMID: 40213398 PMCID: PMC11979048 DOI: 10.1007/s11032-025-01563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Enhancing wheat yield and stress tolerance is a critical long-term objective for global food security. Historically, breeders selected genetic traits from wild wheat relatives for domesticated targets, such as non-shattering and free threshing characteristics, and developed the cultivated wheat. However, the genetic diversity of the cultivated wheat has become narrow after long-term domestication and conscious selection, which seriously limited the yield potential and stress tolerance. Therefore, using wild Triticeae species to broaden the gene pool is an ongoing task for wheat improvement. Psathyrostachy huashanica Keng ex P. C. Kuo (2n = 2x = 14, NsNs), a perennial species of the genus Psathyrostachys Nevski, is restrictively distributed in the Huashan Mountain region of Shaanxi province, China. P. huashanica exhibits considerable potential for wheat breeding due to its valuable agronomic traits such as early maturation, more tillers, abiotic tolerance, and biotic resistance. Over the past four decades, researchers have successfully crossed P. huashanica with common wheat and developed derivative lines with improved agronomic traits. Here, we summarized the morphology, genomic evolution, and derived wheat breeding lines with advanced agronomic characteristics inherited from P. huashanica. This review provides a useful guideline for future research on P. huashanica, and highlights its importance in wheat breeding.
Collapse
Affiliation(s)
- Yinghui Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Binwen Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jingyuan Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Hao Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Wei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yi Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Xing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Yonghong Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Dandan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130 Sichuan China
| |
Collapse
|
2
|
Li T, Tang S, Li W, Zhang S, Wang J, Pan D, Lin Z, Ma X, Chang Y, Liu B, Sun J, Wang X, Zhao M, You C, Luo H, Wang M, Ye X, Zhai J, Shen Z, Du H, Song X, Huang G, Cao X. Genome evolution and initial breeding of the Triticeae grass Leymus chinensis dominating the Eurasian Steppe. Proc Natl Acad Sci U S A 2023; 120:e2308984120. [PMID: 37874858 PMCID: PMC10623014 DOI: 10.1073/pnas.2308984120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Leymus chinensis, a dominant perennial grass in the Eurasian Steppe, is well known for its remarkable adaptability and forage quality. Hardly any breeding has been done on the grass, limiting its potential in ecological restoration and forage productivity. To enable genetic improvement of the untapped, important species, we obtained a 7.85-Gb high-quality genome of L. chinensis with a particularly long contig N50 (318.49 Mb). Its allotetraploid genome is estimated to originate 5.29 million years ago (MYA) from a cross between the Ns-subgenome relating to Psathyrostachys and the unknown Xm-subgenome. Multiple bursts of transposons during 0.433-1.842 MYA after genome allopolyploidization, which involved predominantly the Tekay and Angela of LTR retrotransposons, contributed to its genome expansion and complexity. With the genome resource available, we successfully developed a genetic transformation system as well as the gene-editing pipeline in L. chinensis. We knocked out the monocot-specific miR528 using CRISPR/Cas9, resulting in the improvement of yield-related traits with increases in the tiller number and growth rate. Our research provides valuable genomic resources for Triticeae evolutionary studies and presents a conceptual framework illustrating the utilization of genomic information and genome editing to accelerate the improvement of wild L. chinensis with features such as polyploidization and self-incompatibility.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Shanjie Tang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding071000, China
| | - Shuaibin Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jianli Wang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Duofeng Pan
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Zhelong Lin
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xuan Ma
- College of Life Sciences, Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Normal University, Tianjin300387, China
| | - Yanan Chang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Bo Liu
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Jing Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Mengjie Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Changqing You
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Haofei Luo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Meijia Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing100081, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen518055, China
| | - Zhongbao Shen
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin150086, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding071000, China
| | - Xianwei Song
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Gai Huang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
3
|
Cytogenetic and Molecular Marker Analyses of a Novel Wheat–Psathyrostachys huashanica 7Ns Disomic Addition Line with Powdery Mildew Resistance. Int J Mol Sci 2022; 23:ijms231810285. [PMID: 36142197 PMCID: PMC9499632 DOI: 10.3390/ijms231810285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is a devastating disease that reduces wheat yield and quality worldwide. The exploration and utilization of new resistance genes from wild wheat relatives is the most effective strategy against this disease. Psathyrostachys huashanica Keng f. ex P. C. Kuo (2n = 2x = 14, NsNs) is an important tertiary gene donor with multiple valuable traits for wheat genetic improvement, especially disease resistance. In this study, we developed and identified a new wheat—P. huashanica disomic addition line, 18-1-5—derived from a cross between P. huashanica and common wheat lines Chinese Spring and CSph2b. Sequential genomic and multicolor fluorescence in situ hybridization analyses revealed that 18-1-5 harbored 21 pairs of wheat chromosomes plus a pair of alien Ns chromosomes. Non-denaturing fluorescence in situ hybridization and molecular marker analyses further demonstrated that the alien chromosomes were derived from chromosome 7Ns of P. huashanica. The assessment of powdery mildew response revealed that line 18-1-5 was highly resistant at the adult stage to powdery mildew pathogens prevalent in China. The evaluation of agronomic traits indicated that 18-1-5 had a significantly reduced plant height and an increased kernel length compared with its wheat parents. Using genotyping-by-sequencing technology, we developed 118 PCR-based markers specifically for chromosome 7Ns of P. huashanica and found that 26 of these markers could be used to distinguish the genomes of P. huashanica and other wheat-related species. Line 18-1-5 can therefore serve as a promising bridging parent for wheat disease resistance breeding. These markers should be conducive for the rapid, precise detection of P. huashanica chromosomes and chromosomal segments carrying Pm resistance gene(s) during marker-assisted breeding and for the investigation of genetic differences and phylogenetic relationships among diverse Ns genomes and other closely related ones.
Collapse
|
4
|
Tan B, Zhao L, Li L, Zhang H, Zhu W, Xu L, Wang Y, Zeng J, Fan X, Sha L, Wu D, Cheng Y, Zhang H, Chen G, Zhou Y, Kang H. Identification of a Wheat- Psathyrostachys huashanica 7Ns Ditelosomic Addition Line Conferring Early Maturation by Cytological Analysis and Newly Developed Molecular and FISH Markers. FRONTIERS IN PLANT SCIENCE 2021; 12:784001. [PMID: 34956281 PMCID: PMC8695443 DOI: 10.3389/fpls.2021.784001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
Early maturation is an important objective in wheat breeding programs that could facilitate multiple-cropping systems, decrease disaster- and disease-related losses, ensure stable wheat production, and increase economic benefits. Exploitation of novel germplasm from wild relatives of wheat is an effective means of breeding for early maturity. Psathyrostachys huashanica Keng f. ex P. C. KUO (2n=2x=14, NsNs) is a promising source of useful genes for wheat genetic improvement. In this study, we characterized a novel wheat-P. huashanica line, DT23, derived from distant hybridization between common wheat and P. huashanica. Fluorescence in situ hybridization (FISH) and sequential genomic in situ hybridization (GISH) analyses indicated that DT23 is a stable wheat-P. huashanica ditelosomic addition line. FISH painting and PCR-based landmark unique gene markers analyses further revealed that DT23 is a wheat-P. huashanica 7Ns ditelosomic addition line. Observation of spike differentiation and the growth period revealed that DT23 exhibited earlier maturation than the wheat parents. This is the first report of new earliness per se (Eps) gene(s) probably associated with a group 7 chromosome of P. huashanica. Based on specific locus-amplified fragment sequencing technology, 45 new specific molecular markers and 19 specific FISH probes were developed for the P. huashanica 7Ns chromosome. Marker validation analyses revealed that two specific markers distinguished the Ns genome chromosomes of P. huashanica and the chromosomes of other wheat-related species. These newly developed FISH probes specifically detected Ns genome chromosomes of P. huashanica in the wheat background. The DT23 line will be useful for breeding early maturing wheat. The specific markers and FISH probes developed in this study can be used to detect and trace P. huashanica chromosomes and chromosomal segments carrying elite genes in diverse materials.
Collapse
Affiliation(s)
- Binwen Tan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lei Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lingyu Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hao Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lili Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Dandan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|