1
|
Kavai HM, Makumbi D, Nzuve FM, Woyengo VW, Suresh LM, Muiru WM, Gowda M, Prasanna BM. Inheritance of resistance to maize lethal necrosis in tropical maize inbred lines. FRONTIERS IN PLANT SCIENCE 2025; 15:1506139. [PMID: 39850213 PMCID: PMC11753913 DOI: 10.3389/fpls.2024.1506139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/20/2024] [Indexed: 01/25/2025]
Abstract
Maize (Zea mays L.) production in sub-Saharan Africa can be improved by using hybrids with genetic resistance to maize lethal necrosis (MLN). This study aimed to assess the general (GCA) and specific combining ability (SCA), reciprocal effects, and quantitative genetic basis of MLN resistance and agronomic traits in tropical maize inbred lines. A total of 182 hybrids from a 14-parent diallel, along with their parents, were evaluated under artificial MLN inoculation and rainfed conditions for 3 years in Kenya. Disease ratings at four time points, grain yield (GY), and other agronomic traits were analyzed using Griffing's Method 3 and Hayman's diallel models. Significant (P < 0.001) GCA and SCA mean squares were observed for all traits under disease conditions and most traits under rainfed conditions, highlighting the importance of both additive and non-additive genetic effects. However, additive gene action predominated for all traits. Narrow-sense heritability estimates for MLN resistance (h 2 = 0.52-0.56) indicated a strong additive genetic component. Reciprocal effects were not significant for MLN resistance, suggesting minimal maternal or cytoplasmic inheritance. Four inbred lines showed significant negative GCA effects for MLN resistance and positive GCA effects for GY under artificial MLN inoculation. Inbred lines CKL181281 and CKL182037 (GCA effects for MLN4 = -0.45 and -0.24, respectively) contained the most recessive alleles for MLN resistance. The minimum number of groups of genes involved in MLN resistance was estimated to be three. Breeding strategies that emphasize GCA could effectively be used to improve MLN resistance in this germplasm.
Collapse
Affiliation(s)
- Hilda M. Kavai
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Felister M. Nzuve
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Vincent W. Woyengo
- Kenya Agricultural and Livestock Research Organization, Non-Ruminant Research Institute, Kakamega, Kenya
| | - L. M. Suresh
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - William M. Muiru
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | | |
Collapse
|
2
|
Wen Z, Lu F, Jung M, Humbert S, Marshall L, Hastings C, Wu E, Jones T, Pacheco M, Martinez I, Suresh L, Beyene Y, Boddupalli P, Pixley K, Dhugga KS. Edited eukaryotic translation initiation factors confer resistance against maize lethal necrosis. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3523-3535. [PMID: 39403866 PMCID: PMC11606411 DOI: 10.1111/pbi.14472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 11/27/2024]
Abstract
Maize lethal necrosis (MLN), which is caused by maize chlorotic mottle virus along with a potyvirus, has threatened the food security of smallholders in sub-Saharan Africa. Mutations in eukaryotic translation initiation factors (eIFs), which also facilitate virus genome translation, are known to confer variable resistance against viruses. Following phylogenetic analysis, we selected two eIF4E proteins from maize as the most likely candidates to facilitate MLN infection. A knockout (KO) of each of the corresponding genes in elite but MLN-susceptible maize lines conferred only partial protection. Our inability to knockout both the genes together suggested that at least one was required for survival. When we edited (ED) the eIF4E genes in Mini Maize, however, the plants with the eif4e1-KO became highly resistant, whereas those with the eif4e2-KO remained susceptible. Neither of the causal viruses could be detected in the MLN-inoculated eif4e1-KO plants. The eIF4E2 cDNA in Mini Maize lacked the entire 4th exon, causing a 22-amino acid in-frame deletion, which shortened the protein to 198 amino acids. When we introduced mutations in the 4th exon of the eIF4E2 gene in two elite, MLN-susceptible lines pre-edited for an eif4e1-KO, we obtained as strong resistance against MLN as in eif4e1-KO Mini Maize. The MLN-inoculated lines with eif4e1-KO/eIF4E2-exon-4ED performed as well as the uninoculated wild-type lines. We demonstrate that the C-terminal 38 amino acids of eIF4E2 are dispensable for normal plant growth but are required for the multiplication of MLN viruses. Our discovery has wide applications across plant species for developing virus-resistant varieties.
Collapse
Affiliation(s)
- Zhengyu Wen
- International Maize and Wheat Improvement CenterTexcocoMexico
- Current address: KeyGene Inc.RockvilleMarylandUSA
| | - Fengzhong Lu
- International Maize and Wheat Improvement CenterTexcocoMexico
- Current address: Maize Research Institute, Sichuan Agricultural UniversityChengduChina
| | | | | | | | | | - Emily Wu
- Corteva AgriscienceJohnstonIowaUSA
| | | | - Mario Pacheco
- International Maize and Wheat Improvement CenterTexcocoMexico
| | - Ivan Martinez
- International Maize and Wheat Improvement CenterTexcocoMexico
| | - L.M. Suresh
- International Maize and Wheat Improvement CenterNairobiKenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement CenterNairobiKenya
| | | | - Kevin Pixley
- International Maize and Wheat Improvement CenterTexcocoMexico
| | | |
Collapse
|
3
|
Adegbaju MS, Ajose T, Adegbaju IE, Omosebi T, Ajenifujah-Solebo SO, Falana OY, Shittu OB, Adetunji CO, Akinbo O. Genetic engineering and genome editing technologies as catalyst for Africa's food security: the case of plant biotechnology in Nigeria. Front Genome Ed 2024; 6:1398813. [PMID: 39045572 PMCID: PMC11263695 DOI: 10.3389/fgeed.2024.1398813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/15/2024] [Indexed: 07/25/2024] Open
Abstract
Many African countries are unable to meet the food demands of their growing population and the situation is worsened by climate change and disease outbreaks. This issue of food insecurity may lead to a crisis of epic proportion if effective measures are not in place to make more food available. Thus, deploying biotechnology towards the improvement of existing crop varieties for tolerance or resistance to both biotic and abiotic stresses is crucial to increasing crop production. In order to optimize crop production, several African countries have implemented strategies to make the most of this innovative technology. For example, Nigerian government has implemented the National Biotechnology Policy to facilitate capacity building, research, bioresource development and commercialization of biotechnology products for over two decades. Several government ministries, research centers, universities, and agencies have worked together to implement the policy, resulting in the release of some genetically modified crops to farmers for cultivation and Commercialization, which is a significant accomplishment. However, the transgenic crops were only brought to Nigeria for confined field trials; the manufacturing of the transgenic crops took place outside the country. This may have contributed to the suspicion of pressure groups and embolden proponents of biotechnology as an alien technology. Likewise, this may also be the underlying issue preventing the adoption of biotechnology products in other African countries. It is therefore necessary that African universities develop capacity in various aspects of biotechnology, to continuously train indigenous scientists who can generate innovative ideas tailored towards solving problems that are peculiar to respective country. Therefore, this study intends to establish the role of genetic engineering and genome editing towards the achievement of food security in Africa while using Nigeria as a case study. In our opinion, biotechnology approaches will not only complement conventional breeding methods in the pursuit of crop improvements, but it remains a viable and sustainable means of tackling specific issues hindering optimal crop production. Furthermore, we suggest that financial institutions should offer low-interest loans to new businesses. In order to promote the growth of biotechnology products, especially through the creation of jobs and revenues through molecular farming.
Collapse
Affiliation(s)
- Muyiwa Seyi Adegbaju
- Department of Crop, Soil and Pest Management, Federal University of Technology Akure, Akure, Ondo, Nigeria
| | - Titilayo Ajose
- Fruits and Spices Department, National Horticultural Institute, Ibadan, Oyo, Nigeria
| | | | - Temitayo Omosebi
- Department of Agricultural Technology, Federal College of Forestry, Jos, Nigeria
| | | | - Olaitan Yetunde Falana
- Department of Genetics, Genomic and Bioinformatics, National Biotechnology Research and Development Agency, Abuja, Nigeria
| | - Olufunke Bolatito Shittu
- Department of Microbiology, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Olalekan Akinbo
- African Union Development Agency-NEPAD, Office of Science, Technology and Innovation, Midrand, South Africa
| |
Collapse
|
4
|
Dipta B, Sood S, Mangal V, Bhardwaj V, Thakur AK, Kumar V, Singh B. KASP: a high-throughput genotyping system and its applications in major crop plants for biotic and abiotic stress tolerance. Mol Biol Rep 2024; 51:508. [PMID: 38622474 DOI: 10.1007/s11033-024-09455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
Advances in plant molecular breeding have resulted in the development of new varieties with superior traits, thus improving the crop germplasm. Breeders can screen a large number of accessions without rigorous and time-consuming phenotyping by marker-assisted selection (MAS). Molecular markers are one of the most imperative tools in plant breeding programmes for MAS to develop new cultivars possessing multiple superior traits. Single nucleotide polymorphisms (SNPs) are ideal for MAS due to their low cost, low genotyping error rates, and reproducibility. Kompetitive Allele Specific PCR (KASP) is a globally recognized technology for SNP genotyping. KASP is an allele-specific oligo extension-based PCR assay that uses fluorescence resonance energy transfer (FRET) to detect genetic variations such as SNPs and insertions/deletions (InDels) at a specific locus. Additionally, KASP allows greater flexibility in assay design, which leads to a higher success rate and the capability to genotype a large population. Its versatility and ease of use make it a valuable tool in various fields, including genetics, agriculture, and medical research. KASP has been extensively used in various plant-breeding applications, such as the identification of germplasm resources, quality control (QC) analysis, allele mining, linkage mapping, quantitative trait locus (QTL) mapping, genetic map construction, trait-specific marker development, and MAS. This review provides an overview of the KASP assay and emphasizes its validation in crop improvement related to various biotic and abiotic stress tolerance and quality traits.
Collapse
Affiliation(s)
- Bhawna Dipta
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Salej Sood
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India.
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-National Research Centre on Seed Spices, Tabiji, Ajmer, Rajasthan, 305206, India
| | - Ajay Kumar Thakur
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Bemloe, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
5
|
Hao K, Yang M, Cui Y, Jiao Z, Gao X, Du Z, Wang Z, An M, Xia Z, Wu Y. Transcriptomic and Functional Analyses Reveal the Different Roles of Vitamins C, E, and K in Regulating Viral Infections in Maize. Int J Mol Sci 2023; 24:ijms24098012. [PMID: 37175719 PMCID: PMC10178231 DOI: 10.3390/ijms24098012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Maize lethal necrosis (MLN), one of the most important maize viral diseases, is caused by maize chlorotic mottle virus (MCMV) infection in combination with a potyvirid, such as sugarcane mosaic virus (SCMV). However, the resistance mechanism of maize to MLN remains largely unknown. In this study, we obtained isoform expression profiles of maize after SCMV and MCMV single and synergistic infection (S + M) via comparative analysis of SMRT- and Illumina-based RNA sequencing. A total of 15,508, 7567, and 2378 differentially expressed isoforms (DEIs) were identified in S + M, MCMV, and SCMV libraries, which were primarily involved in photosynthesis, reactive oxygen species (ROS) scavenging, and some pathways related to disease resistance. The results of virus-induced gene silencing (VIGS) assays revealed that silencing of a vitamin C biosynthesis-related gene, ZmGalDH or ZmAPX1, promoted viral infections, while silencing ZmTAT or ZmNQO1, the gene involved in vitamin E or K biosynthesis, inhibited MCMV and S + M infections, likely by regulating the expressions of pathogenesis-related (PR) genes. Moreover, the relationship between viral infections and expression of the above four genes in ten maize inbred lines was determined. We further demonstrated that the exogenous application of vitamin C could effectively suppress viral infections, while vitamins E and K promoted MCMV infection. These findings provide novel insights into the gene regulatory networks of maize in response to MLN, and the roles of vitamins C, E, and K in conditioning viral infections in maize.
Collapse
Affiliation(s)
- Kaiqiang Hao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Miaoren Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yakun Cui
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyuan Jiao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Xinran Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhichao Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiping Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mengnan An
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zihao Xia
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanhua Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
6
|
Achola E, Wasswa P, Fonceka D, Clevenger JP, Bajaj P, Ozias-Akins P, Rami JF, Deom CM, Hoisington DA, Edema R, Odeny DA, Okello DK. Genome-wide association studies reveal novel loci for resistance to groundnut rosette disease in the African core groundnut collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:35. [PMID: 36897398 PMCID: PMC10006280 DOI: 10.1007/s00122-023-04259-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
KEY MESSAGE We identified markers associated with GRD resistance after screening an Africa-wide core collection across three seasons in Uganda Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut.
Collapse
Affiliation(s)
- Esther Achola
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Peter Wasswa
- Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Daniel Fonceka
- Regional Study Center for the Improvement of Drought Adaptation, Senegalese Institute for Agricultural Research, BP 3320, Thiès, Senegal
- UMR AGAP, CIRAD, 34398, Montpellier, France
- UMR AGAP, CIRAD, BP 3320, Thies, Senegal
| | | | - Prasad Bajaj
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana, 502324, India
| | - Peggy Ozias-Akins
- Center for Applied Genetic Technologies, University of Georgia, Tifton, GA, 31793, USA
| | - Jean-François Rami
- UMR AGAP, CIRAD, 34398, Montpellier, France
- UMR AGAP, CIRAD, BP 3320, Thies, Senegal
- CIRAD, INRAE, AGAP, Univ Montpellier, Institut Agro, 34398, Montpellier, France
| | - Carl Michael Deom
- Department of Pathology, The University of Georgia, Athens, GA, 30602, USA
| | - David A Hoisington
- Feed the Future Innovation Lab for Peanut, University of Georgia, Athens, GA, 30602, USA
| | - Richard Edema
- Makerere University Regional Center for Crop Improvement Kampala, P.O. Box 7062, Kampala, Uganda
| | - Damaris Achieng Odeny
- International Crops Research Institute for the Semi-Arid Tropics, PO Box, Nairobi, 39063-00623, Kenya.
| | - David Kalule Okello
- National Semi-Arid Resources Research Institute-Serere, P.O. Box 56, Kampala, Uganda.
| |
Collapse
|
7
|
Johnmark O, Indieka S, Liu G, Gowda M, Suresh LM, Zhang W, Gao X. Fighting Death for Living: Recent Advances in Molecular and Genetic Mechanisms Underlying Maize Lethal Necrosis Disease Resistance. Viruses 2022; 14:2765. [PMID: 36560769 PMCID: PMC9784999 DOI: 10.3390/v14122765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Maize Lethal Necrosis (MLN) disease, caused by a synergistic co-infection of maize chlorotic mottle virus (MCMV) and any member of the Potyviridae family, was first reported in EasternAfrica (EA) a decade ago. It is one of the most devastating threats to maize production in these regions since it can lead up to 100% crop loss. Conventional counter-measures have yielded some success; however, they are becoming less effective in controlling MLN. In EA, the focus has been on the screening and identification of resistant germplasm, dissecting genetic and the molecular basis of the disease resistance, as well as employing modern breeding technologies to develop novel varieties with improved resistance. CIMMYT and scientists from NARS partner organizations have made tremendous progresses in the screening and identification of the MLN-resistant germplasm. Quantitative trait loci mapping and genome-wide association studies using diverse, yet large, populations and lines were conducted. These remarkable efforts have yielded notable outcomes, such as the successful identification of elite resistant donor lines KS23-5 and KS23-6 and their use in breeding, as well as the identification of multiple MLN-tolerance promising loci clustering on Chr 3 and Chr 6. Furthermore, with marker-assisted selection and genomic selection, the above-identified germplasms and loci have been incorporated into elite maize lines in a maize breeding program, thus generating novel varieties with improved MLN resistance levels. However, the underlying molecular mechanisms for MLN resistance require further elucidation. Due to third generation sequencing technologies as well functional genomics tools such as genome-editing and DH technology, it is expected that the breeding time for MLN resistance in farmer-preferred maize varieties in EA will be efficient and shortened.
Collapse
Affiliation(s)
- Onyino Johnmark
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China and Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing Agricultural University, Nanjing 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Biochemistry and Molecular Biology Department, Egerton University, Njoro P.O. Box 536-20115, Kenya
| | - Stephen Indieka
- Biochemistry and Molecular Biology Department, Egerton University, Njoro P.O. Box 536-20115, Kenya
| | - Gaoqiong Liu
- Crops Soils and Horticulture Department, Egerton University, Njoro P.O. Box 536-20115, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - L. M. Suresh
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China and Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing Agricultural University, Nanjing 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- China and Kenya Belt and Road Joint Laboratory on Crop Molecular Biology, Nanjing Agricultural University, Nanjing 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-Sponsored by Province and Ministry, Nanjing Agricultural University, Nanjing 210095, China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Prasanna BM, Burgueño J, Beyene Y, Makumbi D, Asea G, Woyengo V, Tarekegne A, Magorokosho C, Wegary D, Ndhlela T, Zaman-Allah M, Matova PM, Mwansa K, Mashingaidze K, Fato P, Teklewold A, Vivek BS, Zaidi PH, Vinayan MT, Patne N, Rakshit S, Kumar R, Jat SL, Singh SB, Kuchanur PH, Lohithaswa HC, Singh NK, Koirala KB, Ahmed S, Vicente FS, Dhliwayo T, Cairns JE. Genetic trends in CIMMYT's tropical maize breeding pipelines. Sci Rep 2022; 12:20110. [PMID: 36418412 PMCID: PMC9684471 DOI: 10.1038/s41598-022-24536-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Fostering a culture of continuous improvement through regular monitoring of genetic trends in breeding pipelines is essential to improve efficiency and increase accountability. This is the first global study to estimate genetic trends across the International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding pipelines in eastern and southern Africa (ESA), South Asia, and Latin America over the past decade. Data from a total of 4152 advanced breeding trials and 34,813 entries, conducted at 1331 locations in 28 countries globally, were used for this study. Genetic trends for grain yield reached up to 138 kg ha-1 yr-1 in ESA, 118 kg ha-1 yr-1 South Asia and 143 kg ha-1 yr-1 in Latin America. Genetic trend was, in part, related to the extent of deployment of new breeding tools in each pipeline, strength of an extensive phenotyping network, and funding stability. Over the past decade, CIMMYT's breeding pipelines have significantly evolved, incorporating new tools/technologies to increase selection accuracy and intensity, while reducing cycle time. The first pipeline, Eastern Africa Product Profile 1a (EA-PP1a), to implement marker-assisted forward-breeding for resistance to key diseases, coupled with rapid-cycle genomic selection for drought, recorded a genetic trend of 2.46% per year highlighting the potential for deploying new tools/technologies to increase genetic gain.
Collapse
Affiliation(s)
- Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621 Kenya
| | | | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621 Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041, Nairobi, 00621 Kenya
| | - Godfrey Asea
- National Crops Resources Research Institute (NaCRRI), National Agricultural Research Organization, P.O. Box 7084, Kampala, Uganda
| | - Vincent Woyengo
- Kenya Agricultural and Livestock Research Organization (KALRO), P.O. Box 169, Kakamega, 50100 Kenya
| | - Amsal Tarekegne
- CIMMYT, P.O. Box MP163, Harare, Zimbabwe
- Present Address: Zamseed, Lusaka, Zambia
| | | | | | | | | | - Prince M. Matova
- Department of Research and Specialist Services (DR&SS), Crop Breeding Institute, 5th Street Extension, Harare, Zimbabwe
- Present Address: Mukushi Seeds (Pvt) Ltd, Harare, Zimbabwe
| | - Kabamba Mwansa
- Zambia Agricultural Research Institute (ZARI), Lusaka, Zambia
| | | | - Pedro Fato
- Agricultural Research Institute of Mozambique (IIAM), Maputo, Mozambique
| | | | - B. S. Vivek
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - P. H. Zaidi
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - M. T. Vinayan
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - Nagesh Patne
- CIMMYT, ICRISAT Campus, Patancheru, Greater Hyderabad, Telangana India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - Ramesh Kumar
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - S. L. Jat
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - S. B. Singh
- ICAR-Indian Institute of Maize Research (IIMR), Ludhiana, Punjab India
| | - Prakash H. Kuchanur
- University of Agricultural Sciences (UAS), Raichur College of Agriculture, Bheemarayanagudi, Yadagiri, Karnataka India
| | - H. C. Lohithaswa
- University of Agricultural Sciences (UAS), Bangalore, Karnataka India
| | - N. K. Singh
- G.B. Pant, University of Agriculture and Technology, Pantnagar, Uttarakhand India
| | - K. B. Koirala
- Nepal Agricultural Research Council (NARC), Kathmandu, Nepal
| | - Salahuddin Ahmed
- Bangladesh Wheat and Maize Research Institute (BWMRI), Dinajpur, Bangladesh
| | | | | | | |
Collapse
|
9
|
Murithi A, Olsen MS, Kwemoi DB, Veronica O, Ertiro BT, L. M. S, Beyene Y, Das B, Prasanna BM, Gowda M. Discovery and Validation of a Recessively Inherited Major-Effect QTL Conferring Resistance to Maize Lethal Necrosis (MLN) Disease. Front Genet 2021; 12:767883. [PMID: 34868253 PMCID: PMC8640137 DOI: 10.3389/fgene.2021.767883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
Maize lethal necrosis (MLN) is a viral disease with a devastating effect on maize production. Developing and deploying improved varieties with resistance to the disease is important to effectively control MLN; however, little is known about the causal genes and molecular mechanism(s) underlying MLN resistance. Screening thousands of maize inbred lines revealed KS23-5 and KS23-6 as two of the most promising donors of MLN resistance alleles. KS23-5 and KS23-6 lines were earlier developed at the University of Hawaii, United States, on the basis of a source population constituted using germplasm from Kasetsart University, Thailand. Both linkage mapping and association mapping approaches were used to discover and validate genomic regions associated with MLN resistance. Selective genotyping of resistant and susceptible individuals within large F2 populations coupled with genome-wide association study identified a major-effect QTL (qMLN06_157) on chromosome 6 for MLN disease severity score and area under the disease progress curve values in all three F2 populations involving one of the KS23 lines as a parent. The major-effect QTL (qMLN06_157) is recessively inherited and explained 55%-70% of the phenotypic variation with an approximately 6 Mb confidence interval. Linkage mapping in three F3 populations and three F2 populations involving KS23-5 or KS23-6 as one of the parents confirmed the presence of this major-effect QTL on chromosome 6, demonstrating the efficacy of the KS23 allele at qMLN06.157 in varying populations. This QTL could not be identified in population that was not derived using KS23 lines. Validation of this QTL in six F2 populations with 20 SNPs closely linked with qMLN06.157 was further confirmed its consistent expression across populations and its recessive nature of inheritance. On the basis of the consistent and effective resistance afforded by the KS23 allele at qMLN06.157, the QTL can be used in both marker-assisted forward breeding and marker-assisted backcrossing schemes to improve MLN resistance of breeding populations and key lines for eastern Africa.
Collapse
Affiliation(s)
- Ann Murithi
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Michael S. Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Daniel B. Kwemoi
- National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda
| | - Ogugo Veronica
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | | | - Suresh L. M.
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | | | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|