1
|
Incorporation of machine learning and deep neural network approaches into a remote sensing-integrated crop model for the simulation of rice growth. Sci Rep 2022; 12:9030. [PMID: 35637314 PMCID: PMC9151665 DOI: 10.1038/s41598-022-13232-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 05/12/2022] [Indexed: 01/21/2023] Open
Abstract
AbstractMachine learning (ML) and deep neural network (DNN) techniques are promising tools. These can advance mathematical crop modelling methodologies that can integrate these schemes into a process-based crop model capable of reproducing or simulating crop growth. In this study, an innovative hybrid approach for estimating the leaf area index (LAI) of paddy rice using climate data was developed using ML and DNN regression methodologies. First, we investigated suitable ML regressors to explore the LAI estimation of rice based on the relationship between the LAI and three climate factors in two administrative rice-growing regions of South Korea. We found that of the 10 ML regressors explored, the random forest regressor was the most effective LAI estimator, and it even outperformed the DNN regressor, with model efficiencies of 0.88 in Cheorwon and 0.82 in Paju. In addition, we demonstrated that it would be feasible to simulate the LAI using climate factors based on the integration of the ML and DNN regressors in a process-based crop model. Therefore, we assume that the advancements presented in this study can enhance crop growth and productivity monitoring practices by incorporating a crop model with ML and DNN plans.
Collapse
|
2
|
Simulation of Spatiotemporal Variations in Cotton Lint Yield in the Texas High Plains. REMOTE SENSING 2022. [DOI: 10.3390/rs14061421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This study aimed to simulate the spatiotemporal variation in cotton (Gossypium hirsutum L.) growth and lint yield using a remote sensing-integrated crop model (RSCM) for cotton. The developed modeling scheme incorporated proximal sensing data and satellite imagery. We formulated this model and evaluated its accuracy using field datasets obtained in Lamesa in 1999, Halfway in 2002 and 2004, and Lubbock in 2003–2005 in the Texas High Plains in the USA. We found that RSCM cotton could reproduce the cotton leaf area index and lint yield across different locations and irrigation systems with a statistically significant degree of accuracy. RSCM cotton was also used to simulate cotton lint yield for the field circles in Halfway. The RSCM system could accurately reproduce the spatiotemporal variations in cotton lint yield when integrated with satellite images. From the results of this study, we predict that the proposed crop-modeling approach will be applicable for the practical monitoring of cotton growth and productivity by farmers. Furthermore, a user can operate the modeling system with minimal input data, owing to the integration of proximal and remote sensing information.
Collapse
|
3
|
Simulation of Crop Yields Grown under Agro-Photovoltaic Panels: A Case Study in Chonnam Province, South Korea. ENERGIES 2021. [DOI: 10.3390/en14248463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Agro-photovoltaic systems are of interest to the agricultural industry because they can produce both electricity and crops in the same farm field. In this study, we aimed to simulate staple crop yields under agro-photovoltaic panels (AVP) based on the calibration of crop models in the decision support system for agricultural technology (DSSAT) 4.6 package. We reproduced yield data of paddy rice, barley, and soybean grown in AVP experimental fields in Bosung and Naju, Chonnam Province, South Korea, using CERES-Rice, CERES-Barley, and CROPGRO-Soybean models. A geospatial crop simulation modeling (GCSM) system, developed using the crop models, was then applied to simulate the regional variations in crop yield according to solar radiation reduction scenarios. Simulated crop yields agreed with the corresponding measured crop yields with root mean squared errors of 0.29-ton ha−1 for paddy rice, 0.46-ton ha−1 for barley, and 0.31-ton ha−1 for soybean, showing no significant differences according to paired sample t-tests. We also demonstrated that the GCSM system could effectively simulate spatiotemporal variations in crop yields due to the solar radiation reduction regimes. An additional advancement in the GCSM design could help prepare a sustainable adaption strategy and understand future food supply insecurity.
Collapse
|