1
|
Duan Y, Zhao L, Ye D, Zhou J. The Effect of Minerals and Hormones on the Nutrients in Chinese Fir Leaves and Seed Set. PLANTS (BASEL, SWITZERLAND) 2025; 14:887. [PMID: 40265794 PMCID: PMC11945782 DOI: 10.3390/plants14060887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/24/2025]
Abstract
To investigate the impacts of various foliar fertilization levels on the carbon, nitrogen, phosphorus, and potassium content in Chinese fir cuttings, along with their ecological stoichiometry ratios, we selected pruned dwarf Chinese fir clones exhibiting different seed-setting abilities as our subjects. These clones were categorized into high-yield (group A), middle-yield (group B), and low-yield (group C) categories for nutrient assessment. Employing nine treatments of diverse fertilizers and hormones, in addition to a water control (CK), we analyzed and compared the changes in the carbon (C), nitrogen (N), phosphorus (P), and potassium (K) contents in the needles of Chinese fir clones from groups A, B, and C between 2021 and 2022. The results indicated no significant variations in the N content and C:N ratios in July among the three seed-setting characteristic Chinese fir types. However, the P content in the high-yield clones was notably higher than that in the other two types, whereas the K content was significantly lower. Following two years of continuous foliar spraying, treatments T5, T6, T8, and T9 demonstrated efficacy in enhancing the nutrient levels of branches in high-yield clones (with N content increasing by 25.07%, P content by 79.06%, and K content by 12.71%), consequently improving cone quality (as the number of cones increased by up to 256). For middle-yield clones, treatments T3, T6, and T9 exhibited promising outcomes, with respective increases in the N content, P content, and K content by 13.15%, 56.61%, and 41.31%, alongside a rise in cone number by 212. In the case of low-yield clones, the treatments T3, T4, and T5 proved effective, with increases in the N, P, and K contents by 18.54%, 36.57%, and 26.56%, respectively, as well as an increase in cone number by 82. Most treatments exhibited higher C:N ratios than the control in Chinese fir needles, whereas the N:P ratios remained below 14, indicating N limitations in the growth of Chinese fir clones. The application of N fertilizer enhanced the C:N ratios in Chinese fir needles, thereby improving nutrient absorption and utilization efficiency. Therefore, in the fertilization process of Chinese fir, tailored formulas should be employed based on the seed-setting characteristics and management objectives to achieve optimal yield enhancement.
Collapse
Affiliation(s)
- Yu Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Linying Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciencese of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| | - Daiquan Ye
- Fujian Yangkou State Owned Forest Farm, Nanping 353211, China;
| | - Jian Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciencese of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
2
|
Li Y, Ren R, Pan R, Bao Y, Xie T, Zeng L, Fang T. Comparative transcriptome analysis identifies candidate genes related to sucrose accumulation in longan ( Dimocarpus longan Lour.) pulp. FRONTIERS IN PLANT SCIENCE 2024; 15:1379750. [PMID: 38645392 PMCID: PMC11032017 DOI: 10.3389/fpls.2024.1379750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 04/23/2024]
Abstract
Sucrose content is one of the important factors to determine longan fruit flavor quality. To gain deep insight of molecular mechanism on sucrose accumulation in longan, we conducted comparative transcriptomic analysis between low sucrose content longan cultivar 'Qingkebaoyuan' and high sucrose content cultivar 'Songfengben'. A total of 12,350 unique differentially expressed genes (DEGs) were detected across various development stages and different varieties, including hexokinase (HK) and sucrose-phosphate synthase (SPS), which are intricately linked to soluble sugar accumulation and metabolism. Weighted gene co-expression network analysis (WGCNA) identified magenta module, including DlSPS gene, was significantly positively correlated with sucrose content. Furthermore, transient expression unveiled DlSPS gene play crucial role in sucrose accumulation. Moreover, 5 transcription factors (MYB, ERF, bHLH, C2H2, and NAC) were potentially involved in DlSPS regulation. Our findings provide clues for sucrose metabolism, and lay the foundation for longan breeding in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Lihui Zeng
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Fang
- College of Horticulture, Institute of Genetics and Breeding in Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Huang S, Qiao Y, Lv X, Li J, Han D, Guo D. Transcriptome sequencing and DEG analysis in different developmental stages of floral buds induced by potassium chlorate in Dimocarpus longan. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:259-272. [PMID: 36349234 PMCID: PMC9592951 DOI: 10.5511/plantbiotechnology.22.0526a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 06/16/2023]
Abstract
Potassium chlorate can promote off-season flowering in longan, but the molecular mechanisms are poorly understood. In this study, four-year-old 'Shixia' longan trees were injected in the trunk with potassium chlorate, and terminal buds were sampled and analyzed using transcriptomics and bioinformatics tools. To generate a reference longan transcriptome, we obtained 207,734 paired-end reads covering a total of 58,514,149 bp, which we assembled into 114,445 unigenes. Using this resource, we identified 3,265 differentially expressed genes (DEGs) that were regulated in longan terminal buds in response to potassium chlorate treatment for 2, 6 or 30 days, including 179 transcription factor genes. By reference to the Arabidopsis literature, we then defined 38 longan genes involved in flowering, from which we constructed the longan flowering pathway. According to RNA-seq data, at least 24 of these genes, which participate in multiple signaling pathways, are involved in potassium chlorate-stimulated floral induction, and the differential regulation in terminal buds of ten floral pathway genes (GI, CO, GID1, GA4, GA5, FLC, AP1, LFY, FT and SOC1) was confirmed by qRT-PCR. These data will contribute to an improved understanding of the functions of key genes involved in longan floral induction by potassium chlorate.
Collapse
Affiliation(s)
- Shilian Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| | - Yanchun Qiao
- Guangzhou Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xinmin Lv
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| | - Jianguang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences; Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Liang F, Zhang Y, Wang X, Yang S, Fang T, Zheng S, Zeng L. Integrative mRNA and Long Noncoding RNA Analysis Reveals the Regulatory Network of Floral Bud Induction in Longan ( Dimocarpus longan Lour.). FRONTIERS IN PLANT SCIENCE 2022; 13:923183. [PMID: 35774802 PMCID: PMC9237614 DOI: 10.3389/fpls.2022.923183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a tropical/subtropical fruit tree of significant economic importance. Floral induction is an essential process for longan flowering and plays decisive effects on the longan yield. Due to the instability of flowering, it is necessary to understand the molecular mechanisms of floral induction in longan. In this study, mRNA and long noncoding RNA (lncRNA) transcriptome sequencing were performed using the apical buds of fruiting branches as materials. A total of 7,221 differential expressions of mRNAs (DEmRNAs) and 3,238 differential expressions of lncRNAs (DElncRNAs) were identified, respectively. KEGG enrichment analysis of DEmRNAs highlighted the importance of starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways during floral induction. Combining the analysis of weighted gene co-expression network (WGCNA) and expression pattern of DEmRNAs in the three pathways, specific transcriptional characteristics at each stage during floral induction and regulatory network involving co-expressed genes were investigated. The results showed that sucrose metabolism and auxin signal transduction may be crucial for the growth and maturity of autumn shoots in September and October (B1-B2 stage); starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways participated in the regulation of floral bud physiological differentiation together in November and December (B3-B4 stage) and the crosstalk among three pathways was also found. Hub genes in the co-expression network and key DEmRNAs in three pathways were identified. The circadian rhythm genes FKF1 and GI were found to activate SOC1gene through the photoperiod core factor COL genes, and they were co-expressed with auxin, gibberellin, abscisic acid, ethylene signaling genes, and sucrose biosynthesis genes at B4 stage. A total of 12 hub-DElncRNAs had potential for positively affecting their distant target genes in three putative key pathways, predominantly in a co-transcriptional manner. A hypothetical model of regulatory pathways and key genes and lncRNAs during floral bud induction in longan was proposed finally. Our studies will provide valuable clues and information to help elucidate the potential molecular mechanisms of floral initiation in longan and woody fruit trees.
Collapse
Affiliation(s)
- Fan Liang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyong Zhang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodan Wang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Yang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Fang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzho, China
| | - Lihui Zeng
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Chen Q, Zhang X, Fang Y, Wang B, Xu S, Zhao K, Zhang J, Fang J. Genome-Wide Identification and Expression Analysis of the R2R3-MYB Transcription Factor Family Revealed Their Potential Roles in the Flowering Process in Longan ( Dimocarpus longan). FRONTIERS IN PLANT SCIENCE 2022; 13:820439. [PMID: 35401601 PMCID: PMC8990856 DOI: 10.3389/fpls.2022.820439] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/02/2022] [Indexed: 05/10/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a productive fruit crop with high nutritional and medical value in tropical and subtropical regions. The MYB gene family is one of the most widespread plant transcription factor (TF) families participating in the flowering regulation. However, little is known about the MYB TFs involved in the flowering process in longan and its regulatory network. In this study, a total of 119 DlR2R3-MYB genes were identified in the longan genome and were phylogenetically grouped into 28 subgroups. The groupings were supported by highly conserved gene structures and motif composition of DlR2R3-MYB genes in each subgroup. Collinearity analysis demonstrated that segmental replications played a more crucial role in the expansion of the DlR2R3-MYB gene family compared to tandem duplications, and all tandem/segmental duplication gene pairs have evolved under purifying selection. Interspecies synteny analysis among longan and five representative species implied the occurrence of gene duplication events was one of the reasons contributing to functional differentiation among species. RNA-seq data from various tissues showed DlR2R3-MYB genes displayed tissue-preferential expression patterns. The pathway of flower development was enriched with six DlR2R3-MYB genes. Cis-acting element prediction revealed the putative functions of DlR2R3-MYB genes were related to the plant development, phytohormones, and environmental stresses. Notably, the orthologous counterparts between Arabidopsis and longan R2R3-MYB members tended to play conserved roles in the flowering regulation and stress responses. Transcriptome profiling on off-season flower induction (FI) by KClO3 indicated two up-regulated and four down-regulated DlR2R3-MYB genes involved in the response to KClO3 treatment compared with control groups. Additionally, qRT-PCR confirmed certain genes exhibited high expression in flowers/flower buds. Subcellular localization experiments revealed that three predicted flowering-associated MYB proteins were localized in the nucleus. Future functional studies on these potential candidate genes involved in the flowering development could further the understanding of the flowering regulation mechanism.
Collapse
Affiliation(s)
- Qinchang Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yaxue Fang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaosi Xu
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Kai Zhao
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Jisen Zhang,
| | - Jingping Fang
- College of Life Sciences, Fujian Normal University, Fuzhou, China
- Center of Engineering Technology Research for Microalgae Germplasm Improvement of Fujian, Southern Institute of Oceanography, Fujian Normal University, Fuzhou, China
- *Correspondence: Jingping Fang,
| |
Collapse
|