1
|
Gómez-Candón D, Bellvert J, Pelechá A, Lopes MS. A Remote Sensing Approach for Assessing Daily Cumulative Evapotranspiration Integral in Wheat Genotype Screening for Drought Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3871. [PMID: 38005768 PMCID: PMC10675030 DOI: 10.3390/plants12223871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023]
Abstract
This study considers critical aspects of water management and crop productivity in wheat cultivation, specifically examining the daily cumulative actual evapotranspiration (ETa). Traditionally, ETa surface energy balance models have provided estimates at discrete time points, lacking a holistic integrated approach. Field trials were conducted with 22 distinct wheat varieties, grown under both irrigated and rainfed conditions over a two-year span. Leaf area index prediction was enhanced through a robust multiple regression model, incorporating data acquired from an unmanned aerial vehicle using an RGB sensor, and resulting in a predictive model with an R2 value of 0.85. For estimation of the daily cumulative ETa integral, an integrated approach involving remote sensing and energy balance models was adopted. An examination of the relationships between crop yield and evapotranspiration (ETa), while considering factors like year, irrigation methods, and wheat cultivars, unveiled a pronounced positive asymptotic pattern. This suggests the presence of a threshold beyond which additional water application does not significantly enhance crop yield. However, a genetic analysis of the 22 wheat varieties showed no correlation between ETa and yield. This implies opportunities for selecting resource-efficient wheat varieties while minimizing water use. Significantly, substantial disparities in water productivity among the tested wheat varieties indicate the possibility of intentionally choosing lines that can optimize grain production while minimizing water usage within breeding programs. The results of this research lay the foundation for the development of resource-efficient agricultural practices and the cultivation of crop varieties finely attuned to water-scarce regions.
Collapse
Affiliation(s)
- David Gómez-Candón
- Efficient Use of Water in Agriculture Program, Institute of Agrifood Research and Technology (IRTA), Fruitcentre, Parc AgroBiotech, 25003 Lleida, Spain; (J.B.); (A.P.)
| | - Joaquim Bellvert
- Efficient Use of Water in Agriculture Program, Institute of Agrifood Research and Technology (IRTA), Fruitcentre, Parc AgroBiotech, 25003 Lleida, Spain; (J.B.); (A.P.)
| | - Ana Pelechá
- Efficient Use of Water in Agriculture Program, Institute of Agrifood Research and Technology (IRTA), Fruitcentre, Parc AgroBiotech, 25003 Lleida, Spain; (J.B.); (A.P.)
| | - Marta S. Lopes
- Field Crops Program, Institute for Food and Agricultural Research and Technology (IRTA), 251981 Lleida, Spain;
| |
Collapse
|
2
|
Islam MR, Garcia SC, Sarker NR, Islam MA, Clark CEF. Napier grass ( Pennisetum purpureum Schum) management strategies for dairy and meat production in the tropics and subtropics: yield and nutritive value. FRONTIERS IN PLANT SCIENCE 2023; 14:1269976. [PMID: 38034567 PMCID: PMC10682400 DOI: 10.3389/fpls.2023.1269976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Napier grass (Pennisetum purpureum Schumach) comprises up to 80% of the cattle diet in many tropical and subtropical regions and is used primarily by smallholder farmers. Despite the grass's high yield, resulting animal productivity from this grass is low. One of the key reasons for the low animal productivity of Napier grass is its low nutritive value under current management. Taken together, previous work has shown the current yield, crude protein (CP), and metabolisable energy (ME) of Napier grass to be 26 t dry matter (DM)/ha/year, 96 g/kg DM, and 8.7 MJ/kg DM, respectively, ranging from 2 to 86 t DM/ha/year, 9 to 257 g CP/kg DM, and 5.9 to 10.8 MJ ME/kg DM, respectively, suggesting an opportunity for significant improvement on both yield and nutritive value of this grass. The DM yield and nutritive value of this grass are inversely related, indicating a trade-off between yield and quality; however, this trade-off could be minimised by increasing sowing density and harvesting frequency. Available literature shows that this simple management strategy of increasing sowing density (50 cm × 40 cm) and harvesting frequency (11-12 harvests/year) provides 71 t DM/ha with 135 g/kg DM CP and 10.8 MJ ME/kg DM. This quality of Napier grass has the potential to increase both milk and meat production substantially in the tropics and subtropics, and the farmers will likely find this simple management acceptable due to the high yield obtained through this management. However, there is a paucity of work in this field. Therefore, management strategies to improve the nutritive value of Napier grass are required to increase milk and meat production in the tropics and subtropics and in doing so improve the food security of more than half of the global population living in these regions.
Collapse
Affiliation(s)
- M. Rafiq Islam
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
- Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Sergio C. Garcia
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
- Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| | - Nathu R. Sarker
- Krishi Gobeshona Foundation, Bangladesh Agricultural Research Council Complex, Dhaka, Bangladesh
| | - Md. Ashraful Islam
- Department of Dairy Science, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, Bangladesh
| | - Cameron E. F. Clark
- Dairy Science Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
- Livestock Production and Welfare Group, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Camden, NSW, Australia
- Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, Camden, NSW, Australia
| |
Collapse
|
3
|
Muktar MS, Bizuneh T, Anderson W, Assefa Y, Negawo AT, Teshome A, Habte E, Muchugi A, Feyissa T, Jones CS. Analysis of global Napier grass (Cenchrus purpureus) collections reveals high genetic diversity among genotypes with some redundancy between collections. Sci Rep 2023; 13:14509. [PMID: 37667017 PMCID: PMC10477186 DOI: 10.1038/s41598-023-41583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
Genetic diversity amongst genotypes of several Napier grass collections was analyzed and compared with the diversity in a set of open pollinated progeny plants. A total of 114,881 SNP and 46,293 SilicoDArT genome-wide markers were generated on 574 Napier grass genotypes. Of these, 86% of the SNP and 66% of the SilicoDArT markers were mapped onto the fourteen chromosomes of the Napier grass genome. For genetic diversity analysis, a subset of highly polymorphic and informative SNP markers was filtered using genomic position information, a maximum of 10% missing values, a minimum minor allele frequency of 5%, and a maximum linkage-disequilibrium value of 0.5. Extensive genetic variation, with an average Nei's genetic distance value of 0.23, was identified in the material. The genotypes clustered into three major and eleven sub-clusters with high levels of genetic variation contained both within (54%) and between (46%) clusters. However, we found that there was low to moderate genetic differentiation among the collections and that some overlap and redundancy occurred between collections. The progeny plants were genetically diverse and divergent from the germplasm collections, with an average FST value of 0.08. We also reported QTL regions associated with forage biomass yield based on field phenotype data measured on a subset of the Napier grass collections. The findings of this study offer useful information for Napier grass breeding strategies, enhancement of genetic diversity, and provide a guide for the management and conservation of the collections.
Collapse
Affiliation(s)
- Meki S Muktar
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Tadelech Bizuneh
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Centre, Holeta, Ethiopia
| | - William Anderson
- Crop Genetics and Breeding Research Unit, USDA-ARS, 115 Coastal Ways, Tifton, GA, 31793, USA
| | - Yilikal Assefa
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Alemayehu T Negawo
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Abel Teshome
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Ermias Habte
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Alice Muchugi
- Feed and Forage Development, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Tileye Feyissa
- Institute of Biotechnology, College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Chris S Jones
- Feed and Forage Development, International Livestock Research Institute, Nairobi, Kenya.
| |
Collapse
|
4
|
Wu C, Bai Y, Cao Z, Xu J, Xie Y, Zheng H, Jiang J, Mu C, Cheng W, Fang H, Gao J. Plasticity in the Morphology of Growing Bamboo: A Bayesian Analysis of Exogenous Treatment Effects on Plant Height, Internode Length, and Internode Numbers. PLANTS (BASEL, SWITZERLAND) 2023; 12:1713. [PMID: 37111934 PMCID: PMC10145155 DOI: 10.3390/plants12081713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Sucrose (Suc) and gibberellin (GA) can promote the elongation of certain internodes in bamboo. However, there is a lack of field studies to support these findings and no evidence concerning how Suc and GA promote the plant height of bamboo by regulating the internode elongation and number. We investigated the plant height, the length of each internode, and the total number of internodes of Moso bamboo (Phyllostachys edulis) under exogenous Suc, GA, and control group (CTRL) treatments in the field and analyzed how Suc and GA affected the height of Moso bamboo by promoting the internode length and number. The lengths of the 10th-50th internodes were significantly increased under the exogenous Suc and GA treatments, and the number of internodes was significantly increased by the exogenous Suc treatment. The increased effect of Suc and GA exogenous treatment on the proportion of longer internodes showed a weakening trend near the plant height of 15-16 m compared with the CTRL, suggesting that these exogenous treatments may be more effective in regions where bamboo growth is suboptimal. This study demonstrated that both the exogenous Suc and GA treatments could promote internode elongation of Moso bamboo in the field. The exogenous GA treatment had a stronger effect on internode elongation, and the exogenous Suc treatment had a stronger effect on increasing the internode numbers. The increase in plant height by the exogenous Suc and GA treatments was promoted by the co-elongation of most internodes or the increase in the proportion of longer internodes.
Collapse
Affiliation(s)
- Chongyang Wu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Zhihua Cao
- Anhui Academy of Forestry, Hefei 230036, China
| | - Junlei Xu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Yali Xie
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Huifang Zheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Changhong Mu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Wenlong Cheng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Hui Fang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology/International Center for Bamboo and Rattan, Beijing 100102, China; (C.W.); (Y.B.); (J.X.); (Y.X.); (J.J.); (C.M.); (W.C.); (H.F.)
| |
Collapse
|
5
|
Productivity and Feed Quality Performance of Napier Grass (Cenchrus purpureus) Genotypes Growing under Different Soil Moisture Levels. PLANTS 2022; 11:plants11192549. [PMID: 36235418 PMCID: PMC9572638 DOI: 10.3390/plants11192549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
In the semi-arid and arid environments of Sub-Sharan Africa, forage availability throughout the year is insufficient and highly limited during the dry seasons due to limited precipitation. Thus, the identification of drought stress-tolerant forage cultivars is one of the main activities in forage development programs. In this study, Napier grass (Cenchrus purpureus), an important forage crop in Eastern and Central Africa that is broadly adapted to produce across tropical environments, was evaluated for its water use efficiency and production performance under field drought stress conditions. Eighty-four Napier grass genotypes were evaluated for their drought stress tolerance from 2018 to 2020 using agro-morphological and feed quality traits under two soil moisture stress regimes during the dry season, i.e., moderate (MWS) and severe (SWS) water stress conditions, and under rainfed conditions in the wet season (wet). Overall, the results indicated the existence of genotype variation for the traits studied. In general, the growth and productivity of the genotypes declined under SWS compared to MWS conditions. High biomass-yielding genotypes with enhanced WUE were consistently observed across harvests in each soil moisture stress regime. In addition, the top biomass-yielding genotypes produced the highest annual crude protein yield, indicating the possibility of developing high-feed-quality Napier grass genotypes for drought stress environments.
Collapse
|