1
|
Fick A, Fick JLM, Swart V, van den Berg N. In silico prediction method for plant Nucleotide-binding leucine-rich repeat- and pathogen effector interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70169. [PMID: 40304719 PMCID: PMC12042882 DOI: 10.1111/tpj.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 05/02/2025]
Abstract
Plant Nucleotide-binding leucine-rich repeat (NLR) proteins play a crucial role in effector recognition and activation of Effector triggered immunity following pathogen infection. Genome sequencing advancements have led to the identification of a myriad of NLRs in numerous agriculturally important plant species. However, deciphering which NLRs recognize specific pathogen effectors remains challenging. Predicting NLR-effector interactions in silico will provide a more targeted approach for experimental validation, critical for elucidating function, and advancing our understanding of NLR-triggered immunity. In this study, NLR-effector protein complex structures were predicted using AlphaFold2-Multimer for all experimentally validated NLR-effector interactions reported in literature. Binding affinities- and energies were predicted using 97 machine learning models from Area-Affinity. We show that AlphaFold2-Multimer predicted structures have acceptable accuracy and can be used to investigate NLR-effector interactions in silico. Binding affinities for 58 NLR-effector complexes ranged between -8.5 and -10.6 log(K), and binding energies between -11.8 and -14.4 kcal/mol-1, depending on the Area-Affinity model used. For 2427 "forced" NLR-effector complexes, these estimates showed larger variability, enabling identification of novel NLR-effector interactions with 99% accuracy using an Ensemble machine learning model. The narrow range of binding energies- and affinities for "true" interactions suggest a specific change in Gibbs free energy, and thus conformational change, is required for NLR activation. This is the first study to provide a method for predicting NLR-effector interactions, applicable to all pathosystems. Finally, the NLR-Effector Interaction Classification (NEIC) resource can streamline research efforts by identifying NLRs important for plant-pathogen resistance, advancing our understanding of plant immunity.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | | | - Velushka Swart
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and MicrobiologyUniversity of PretoriaPretoriaGautengSouth Africa
- Hans Merensky Chair in Avocado Research, Forestry and Agricultural Biotechnology InstituteUniversity of PretoriaPretoriaGautengSouth Africa
| |
Collapse
|
2
|
Wang L, Li R, Guan X, Yan S. Prediction of protein interactions between pine and pine wood nematode using deep learning and multi-dimensional feature fusion. FRONTIERS IN PLANT SCIENCE 2024; 15:1489116. [PMID: 39687321 PMCID: PMC11646721 DOI: 10.3389/fpls.2024.1489116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024]
Abstract
Pine Wilt Disease (PWD) is a devastating forest disease that has a serious impact on ecological balance ecological. Since the identification of plant-pathogen protein interactions (PPIs) is a critical step in understanding the pathogenic system of the pine wilt disease, this study proposes a Multi-feature Fusion Graph Attention Convolution (MFGAC-PPI) for predicting plant-pathogen PPIs based on deep learning. Compared with methods based on single-feature information, MFGAC-PPI obtains more 3D characterization information by utilizing AlphaFold and combining protein sequence features to extract multi-dimensional features via Transform with improved GCN. The performance of MFGAC-PPI was compared with the current representative methods of sequence-based, structure-based and hybrid characterization, demonstrating its superiority across all metrics. The experiments showed that learning multi-dimensional feature information effectively improved the ability of MFGAC-PPI in plant and pathogen PPI prediction tasks. Meanwhile, a pine wilt disease PPI network consisting of 2,688 interacting protein pairs was constructed based on MFGAC-PPI, which made it possible to systematically discover new disease resistance genes in pine trees and promoted the understanding of plant-pathogen interactions.
Collapse
Affiliation(s)
- Liuyan Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Rongguang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Xuemei Guan
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, Heilongjiang, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Forest Ecosystem Management, School of Forestry, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
3
|
Geist JL, Lee CY, Strom JM, de Jesús Naveja J, Luck K. Generation of a high confidence set of domain-domain interface types to guide protein complex structure predictions by AlphaFold. Bioinformatics 2024; 40:btae482. [PMID: 39171834 PMCID: PMC11361816 DOI: 10.1093/bioinformatics/btae482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/10/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024] Open
Abstract
MOTIVATION While the release of AlphaFold (AF) represented a breakthrough for the prediction of protein complex structures, its sensitivity, especially when using full length protein sequences, still remains limited. Modeling success rates might increase if AF predictions were guided by likely interacting protein fragments. This approach requires available sets of highly confident protein-protein interface types. Computational resources, such as 3did, infer interacting globular domain types from observed contacts in protein structures. Assessing the accuracy of these predicted interface types is difficult because we lack hand-curated reference sets of verified domain-domain interface (DDI) types. RESULTS To improve protein complex modeling of DDIs by AF, we manually inspected 80 randomly selected DDI types from the 3did resource to generate a first reference set of DDI types. Identified cases of DDI type nonapproval (40%) primarily resulted from inaccurate Pfam domain matches, crystal contacts, and synthetic protein constructs. Using logistic regression, we predicted a subset of 2411 out of 5724 considered DDI types in 3did to be of high confidence, which we subsequently applied to 53 000 human-protein interactions to predict DDIs followed by AF modeling. We obtained highly confident AF models for 604 out of 1129 predicted DDIs. Of note, for 47% of them no confident AF structural model could be obtained using full length protein sequences. AVAILABILITY AND IMPLEMENTATION Code is available at https://github.com/KatjaLuckLab/DDI_manuscript.
Collapse
Affiliation(s)
| | - Chop Yan Lee
- Institute of Molecular Biology (IMB) gGmbH, Mainz 55128, Germany
| | | | - José de Jesús Naveja
- Institute of Molecular Biology (IMB) gGmbH, Mainz 55128, Germany
- 3rd Medical Department, University Medical Center, Johannes Gutenberg University Mainz, Mainz 55131, Germany
- University Cancer Center, University Medical Center, Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Katja Luck
- Institute of Molecular Biology (IMB) gGmbH, Mainz 55128, Germany
| |
Collapse
|
4
|
Rosilan NF, Waiho K, Fazhan H, Sung YY, Zakaria NH, Afiqah-Aleng N, Mohamed-Hussein ZA. Current trends of host-pathogen relationship in shrimp infectious disease via computational protein-protein interaction: A bibliometric analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109171. [PMID: 37858788 DOI: 10.1016/j.fsi.2023.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Protein-protein interactions (PPIs) are essential for understanding cell physiology in normal and pathological conditions, as they might involve in all cellular processes. PPIs have been widely used to elucidate the pathobiology of human and plant diseases. Therefore, they can also be used to unveil the pathobiology of infectious diseases in shrimp, which is one of the high-risk factors influencing the success or failure of shrimp production. PPI network analysis, specifically host-pathogen PPI (HP-PPI), provides insights into the molecular interactions between the shrimp and pathogens. This review quantitatively analyzed the research trends within this field through bibliometric analysis using specific keywords, countries, authors, organizations, journals, and documents. This analysis has screened 206 records from the Scopus database for determining eligibility, resulting in 179 papers that were retrieved for bibliometric analysis. The analysis revealed that China and Thailand were the driving forces behind this specific field of research and frequently collaborated with the United States. Aquaculture and Diseases of Aquatic Organisms were the prominent sources for publications in this field. The main keywords identified included "white spot syndrome virus," "WSSV," and "shrimp." We discovered that studies on HP-PPI are currently quite scarce. As a result, we further discussed the significance of HP-PPI by highlighting various approaches that have been previously adopted. These findings not only emphasize the importance of HP-PPI but also pave the way for future researchers to explore the pathogenesis of infectious diseases in shrimp. By doing so, preventative measures and enhanced treatment strategies can be identified.
Collapse
Affiliation(s)
- Nur Fathiah Rosilan
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Khor Waiho
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Minden, 11900, Penang, Malaysia; Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 10900, Bangkok, Thailand
| | - Hanafiah Fazhan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Minden, 11900, Penang, Malaysia; Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 10900, Bangkok, Thailand
| | - Yeong Yik Sung
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nor Hafizah Zakaria
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Nor Afiqah-Aleng
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Zeti-Azura Mohamed-Hussein
- UKM Medical Molecular Biology Institute, UKM Medical Centre, Jalan Yaacob Latiff, 56000, Cheras, Kuala Lumpur, Malaysia; Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Jayaprakash A, Roy A, Thanmalagan RR, Arunachalam A, P T V L. Understanding the mechanism of pathogenicity through interactome studies between Arachis hypogaea L. and Aspergillus flavus. J Proteomics 2023; 287:104975. [PMID: 37482270 DOI: 10.1016/j.jprot.2023.104975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Aspergillus flavus (A. flavus) infects the peanut seeds during pre-and post-harvest stages, causing seed quality destruction for humans and livestock consumption. Even though many resistant varieties were developed, the molecular mechanism of defense interactions of peanut against A. flavus still needs further investigation. Hence, an interologous host-pathogen protein interaction (HPPI) network was constructed to understand the subcellular level interaction mechanism between peanut and A. flavus. Out of the top 10 hub proteins of both organisms, protein phosphatase 2C and cyclic nucleotide-binding/kinase domain-containing protein and different ribosomal proteins were identified as candidate proteins involved in defense. Functional annotation and subcellular localization based characterization of HPPI identified protein SGT1 homolog, calmodulin and Rac-like GTP-binding proteins to be involved in defense response against fungus. The relevance of HPPI in infectious conditions was assessed using two transcriptome data which identified the interplay of host kinase class R proteins, bHLH TFs and cell wall related proteins to impart resistance against pathogen infection. Further, the pathogenicity analysis identified glycogen phosphorylase and molecular chaperone and allergen Mod-E/Hsp90/Hsp1 as potential pathogen targets to enhance the host defense mechanism. Hence, the computationally predicted host-pathogen PPI network could provide valuable support for molecular biology experiments to understand the host-pathogen interaction. SIGNIFICANCE: Protein-protein interactions execute significant cellular interactions in an organism and are influenced majorly by stress conditions. Here we reported the host-pathogen protein-protein interaction between peanut and A. flavus, and a detailed network analysis based on function, subcellular localization, gene co-expression, and pathogenicity was performed. The network analysis identified key proteins such as host kinase class R proteins, calmodulin, SGT1 homolog, Rac-like GTP-binding proteins bHLH TFs and cell wall related to impart resistance against pathogen infection. We observed the interplay of defense related proteins and cell wall related proteins predominantly, which could be subjected to further studies. The network analysis described in this study could be applied to understand other host-pathogen systems generally.
Collapse
Affiliation(s)
- Aiswarya Jayaprakash
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R. V. Nagar Kalapet, Pondicherry 605014, India
| | - Abhijeet Roy
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R. V. Nagar Kalapet, Pondicherry 605014, India
| | - Raja Rajeswary Thanmalagan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R. V. Nagar Kalapet, Pondicherry 605014, India
| | - Annamalai Arunachalam
- Department of Food Science & Technology, School of Life Sciences, Pondicherry University, R. V. Nagar Kalapet, Pondicherry 605014, India
| | - Lakshmi P T V
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, R. V. Nagar Kalapet, Pondicherry 605014, India.
| |
Collapse
|
6
|
Martins YC, Ziviani A, Cerqueira e Costa MDO, Cavalcanti MCR, Nicolás MF, de Vasconcelos ATR. PPIntegrator: semantic integrative system for protein-protein interaction and application for host-pathogen datasets. BIOINFORMATICS ADVANCES 2023; 3:vbad067. [PMID: 37359724 PMCID: PMC10290227 DOI: 10.1093/bioadv/vbad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/28/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023]
Abstract
Summary Semantic web standards have shown importance in the last 20 years in promoting data formalization and interlinking between the existing knowledge graphs. In this context, several ontologies and data integration initiatives have emerged in recent years for the biological area, such as the broadly used Gene Ontology that contains metadata to annotate gene function and subcellular location. Another important subject in the biological area is protein-protein interactions (PPIs) which have applications like protein function inference. Current PPI databases have heterogeneous exportation methods that challenge their integration and analysis. Presently, several initiatives of ontologies covering some concepts of the PPI domain are available to promote interoperability across datasets. However, the efforts to stimulate guidelines for automatic semantic data integration and analysis for PPIs in these datasets are limited. Here, we present PPIntegrator, a system that semantically describes data related to protein interactions. We also introduce an enrichment pipeline to generate, predict and validate new potential host-pathogen datasets by transitivity analysis. PPIntegrator contains a data preparation module to organize data from three reference databases and a triplification and data fusion module to describe the provenance information and results. This work provides an overview of the PPIntegrator system applied to integrate and compare host-pathogen PPI datasets from four bacterial species using our proposed transitivity analysis pipeline. We also demonstrated some critical queries to analyze this kind of data and highlight the importance and usage of the semantic data generated by our system. Availability and implementation https://github.com/YasCoMa/ppintegrator, https://github.com/YasCoMa/ppi_validation_process and https://github.com/YasCoMa/predprin.
Collapse
Affiliation(s)
- Yasmmin Côrtes Martins
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petrópolis 25651-076, Brazil
| | - Artur Ziviani
- Data Extreme Laboratory (DEXL), National Laboratory for Scientific Computing, Petrópolis 25651-076, Brazil
| | | | | | - Marisa Fabiana Nicolás
- Bioinformatics Laboratory, National Laboratory for Scientific Computing, Petrópolis 25651-076, Brazil
| | | |
Collapse
|
7
|
Karan B, Mahapatra S, Sahu SS, Pandey DM, Chakravarty S. Computational models for prediction of protein-protein interaction in rice and Magnaporthe grisea. FRONTIERS IN PLANT SCIENCE 2023; 13:1046209. [PMID: 36816487 PMCID: PMC9929577 DOI: 10.3389/fpls.2022.1046209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plant-microbe interactions play a vital role in the development of strategies to manage pathogen-induced destructive diseases that cause enormous crop losses every year. Rice blast is one of the severe diseases to rice Oryza sativa (O. sativa) due to Magnaporthe grisea (M. grisea) fungus. Protein-protein interaction (PPI) between rice and fungus plays a key role in causing rice blast disease. METHODS In this paper, four genomic information-based models such as (i) the interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based model are developed for predicting the interaction between O. sativa and M. grisea in a whole-genome scale. RESULTS AND DISCUSSION A total of 59,430 interacting pairs between 1,801 rice proteins and 135 blast fungus proteins are obtained from the four models. Furthermore, a machine learning model is developed to assess the predicted interactions. Using composition-based amino acid composition (AAC) and conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively. When tested on the experimental dataset, the CT feature provides the highest accuracy of 95%. Furthermore, the specificity of the model is verified with other pathogen-host datasets where less accuracy is obtained, which confirmed that the model is specific to O. sativa and M. grisea. Understanding the molecular processes behind rice resistance to blast fungus begins with the identification of PPIs, and these predicted PPIs will be useful for drug design in the plant science community.
Collapse
Affiliation(s)
- Biswajit Karan
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Satyajit Mahapatra
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Sitanshu Sekhar Sahu
- Department of Electronics and Communication Engineering, Birla Institute of Technology, Ranchi, India
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Sumit Chakravarty
- Department of Electrical and Computer Engineering, Kennesaw State University, Kennesaw, GA, United States
| |
Collapse
|
8
|
Wang S, Wu R, Lu J, Jiang Y, Huang T, Cai YD. Protein-protein interaction networks as miners of biological discovery. Proteomics 2022; 22:e2100190. [PMID: 35567424 DOI: 10.1002/pmic.202100190] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022]
Abstract
Protein-protein interactions (PPIs) form the basis of a myriad of biological pathways and mechanism, such as the formation of protein-complexes or the components of signaling cascades. Here, we reviewed experimental methods for identifying PPI pairs, including yeast two-hybrid, mass spectrometry, co-localization, and co-immunoprecipitation. Furthermore, a range of computational methods leveraging biochemical properties, evolution history, protein structures and more have enabled identification of additional PPIs. Given the wealth of known PPIs, we reviewed important network methods to construct and analyze networks of PPIs. These methods aid biological discovery through identifying hub genes and dynamic changes in the network, and have been thoroughly applied in various fields of biological research. Lastly, we discussed the challenges and future direction of research utilizing the power of PPI networks. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Steven Wang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Runxin Wu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jiaqi Lu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Yijia Jiang
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tao Huang
- Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Fang H, Zhong C, Tang C. Predicting protein–protein interactions between banana and Fusarium oxysporum f. sp. cubense race 4 integrating sequence and domain homologous alignment and neural network verification. Proteome Sci 2022; 20:4. [PMID: 35351140 PMCID: PMC8962045 DOI: 10.1186/s12953-022-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Background The pathogen of banana Fusarium oxysporum f. sp. cubense race 4(Foc4) infects almost all banana species, and it is the most destructive. The molecular mechanism of the interactions between Fusarium oxysporum and banana still needs to be further investigated. Methods We use both the interolog and domain-domain method to predict the protein–protein interactions (PPIs) between banana and Foc4. The predicted protein interaction sequences are encoded by the conjoint triad and autocovariance method respectively to obtain continuous and discontinuous information of protein sequences. This information is used as the input data of the neural network model. The Long Short-Term Memory (LSTM) neural network five-fold cross-validation and independent test methods are used to verify the predicted protein interaction sequences. To further confirm the PPIs between banana and Foc4, the GO (Gene Ontology) and KEGG (Kyoto Encylopedia of Genes and Genomics) functional annotation and interaction network analysis are carried out. Results The experimental results show that the PPIs for banana and foc4 predicted by our proposed method may interact with each other in terms of sequence structure, GO and KEGG functional annotation, and Foc4 protein plays a more active role in the process of Foc4 infecting banana. Conclusions This study obtained the PPIs between banana and Foc4 by using computing means for the first time, which will provide data support for molecular biology experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-022-00186-2.
Collapse
|