1
|
Meitil IK, de O.G. Silva C, Pedersen AG, Agger JW. Classification of polyphenol oxidases shows ancient gene duplication leading to two distinct enzyme types. iScience 2025; 28:111771. [PMID: 39925425 PMCID: PMC11803259 DOI: 10.1016/j.isci.2025.111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Polyphenol oxidases (PPOs) are coupled binuclear copper proteins that catalyze the oxidation of phenols. New functions of PPOs are continuously being discovered, latest with several fungal o-methoxy phenolases, which are active on lignin-derived compounds. Here, we perform a comprehensive phylogenetic analysis of PPOs from a wide taxonomic origin and define 12 PPO groups. We find that a deep gene duplication has led to two distinct PPO types. Type 1 includes PPOs from chordates and molluscs, as well as the fungal o-methoxy phenolases. Type 2 includes plant PPOs, molluscan hemocyanins, and fungal tyrosinases. Most of the type 2 proteins have a C-terminal shielding domain and a thioether bond in the copper-binding site. We also find that most ascomycetes contain high numbers of the PPO type 1 that includes the o-methoxy phenolases, which may indicate a role in the lignin conversion strategy of these fungi.
Collapse
Affiliation(s)
- Ida K.S. Meitil
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Caio de O.G. Silva
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anders Gorm Pedersen
- Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jane W. Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Huang W, Yan Y, Tian W, Cui X, Wang Y, Song Y, Mo T, Xu X, Zhao S, Liu Y, Wang X, Wang J, Jiang Y, Li J, Shi SP, Liu X, Tu P. Complete pathway elucidation of echinacoside in Cistanche tubulosa and de novo biosynthesis of phenylethanoid glycosides. Nat Commun 2025; 16:882. [PMID: 39837891 PMCID: PMC11751479 DOI: 10.1038/s41467-025-56243-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025] Open
Abstract
Echinacoside (ECH), one of the most representative phenylethanoid glycosides (PhGs), has considerable neuroprotective effects and is an effective ingredient in numerous commercial drugs. Here, we elucidate the complete ECH biosynthetic pathway in the medicinal plant Cistanche tubulosa. In total, 14 related genes are cloned and functionally characterized. Two upstream pathways for tyrosol biosynthesis from L-tyrosine are identified: one includes separate decarboxylation, deamination and reduction steps; the other uses microbial-like transamination, decarboxylation and reduction steps. In addition, a distinct downstream assembly process from tyrosol to ECH is revealed that includes sequential glucosylation, acylation, hydroxylation, and rhamnosylation to form acteoside, and ends with a final glucosylation converting acteoside to ECH. Furthermore, the de novo synthesis of 23 PhG derivatives is achieved via the heterologous expression of different combinations of the functional genes in tobacco. Our findings provide insights into the biosynthesis of ECH and a platform for alternative production of complex PhGs.
Collapse
Affiliation(s)
- Wenqian Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yaru Yan
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Weisheng Tian
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Xiaoxue Cui
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yingxia Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Saijing Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yuyu Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Juan Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, PR China
| | - Jun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
| | - She-Po Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, 102488, Beijing, PR China.
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100191, Beijing, PR China.
| |
Collapse
|
3
|
Marques HM. Electron transfer in biological systems. J Biol Inorg Chem 2024; 29:641-683. [PMID: 39424709 PMCID: PMC11638306 DOI: 10.1007/s00775-024-02076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/27/2024] [Indexed: 10/21/2024]
Abstract
Examples of how metalloproteins feature in electron transfer processes in biological systems are reviewed. Attention is focused on the electron transport chains of cellular respiration and photosynthesis, and on metalloproteins that directly couple electron transfer to a chemical reaction. Brief mention is also made of extracellular electron transport. While covering highlights of the recent and the current literature, this review is aimed primarily at introducing the senior undergraduate and the novice postgraduate student to this important aspect of bioinorganic chemistry.
Collapse
Affiliation(s)
- Helder M Marques
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
4
|
Gonçalves J, Araújo A, Pedron T, Santos R, Bouguerra S, Ribeiro JA, Pereira R, Pereira CM, Azenha M. Discarded substrates from soilless hydroponic horticulture as potential amendments for metal-contaminated soils. CHEMOSPHERE 2024; 364:143127. [PMID: 39154767 DOI: 10.1016/j.chemosphere.2024.143127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/11/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Soil contamination with metals is a major threat for the environment and public health since most metals are toxic to humans and to non-human biota, even at low concentrations. Thus, new sustainable remediation approaches are currently needed to immobilize metals in soils to decrease their mobility and bioavailability. In this work, we explore the application of discarded substrates from hydroponic cultivation, namely coconut shell and a mixture of coconut shell and pine bark, for immobilization of metals (Cd, Cr, Ni, Cu, Pb, Hg, Sb and As) in a naturally contaminated soil from a mining region in Portugal. The immobilization capacity of substrates (added to the soil at 5% mass ratio) was assessed both individually and also combined with other traditional agriculture soil additives (limestone and gypsum, at 2% mass ratio) and nanoparticles of zero-valent iron (nZVI) at 1-3% mass ratio. The overall results obtained after a 30-d incubation showed that the discarded substrates are a viable, economic, and environmental-friendly solution for metal remediation in soils, with the capacity of immobilization ranging from 20 to 91% for the metals and metalloids studied. Furthermore, they showed the capacity to reduce the soil toxicity (EC50 ∼ 6000 mg/L) to non-toxic levels (EC50 > 10000 mg/L) to the bacteria Aliivrio fischeri.
Collapse
Affiliation(s)
- Joana Gonçalves
- CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ana Araújo
- CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Tatiana Pedron
- CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Rui Santos
- CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal; Analytik Jena at CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Sirine Bouguerra
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - José A Ribeiro
- CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruth Pereira
- GreenUPorto, Sustainable Agrifood Production Research Centre & INOV4AGRO, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Manuel Azenha
- CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
5
|
Chekan JR, Mydy LS, Pasquale MA, Kersten RD. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides. Nat Prod Rep 2024; 41:1020-1059. [PMID: 38411572 PMCID: PMC11253845 DOI: 10.1039/d3np00042g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 02/28/2024]
Abstract
Covering 1965 to February 2024Plants are prolific peptide chemists and are known to make thousands of different peptidic molecules. These peptides vary dramatically in their size, chemistry, and bioactivity. Despite their differences, all plant peptides to date are biosynthesized as ribosomally synthesized and post-translationally modified peptides (RiPPs). Decades of research in plant RiPP biosynthesis have extended the definition and scope of RiPPs from microbial sources, establishing paradigms and discovering new families of biosynthetic enzymes. The discovery and elucidation of plant peptide pathways is challenging due to repurposing and evolution of housekeeping genes as both precursor peptides and biosynthetic enzymes and due to the low rates of gene clustering in plants. In this review, we highlight the chemistry, biosynthesis, and function of the known RiPP classes from plants and recommend a nomenclature for the recent addition of BURP-domain-derived RiPPs termed burpitides. Burpitides are an emerging family of cyclic plant RiPPs characterized by macrocyclic crosslinks between tyrosine or tryptophan side chains and other amino acid side chains or their peptide backbone that are formed by copper-dependent BURP-domain-containing proteins termed burpitide cyclases. Finally, we review the discovery of plant RiPPs through bioactivity-guided, structure-guided, and gene-guided approaches.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Chimilouski L, Slominski WH, Tillmann AI, Will D, dos Santos AM, Farias G, Martendal E, Naidek KP, Xavier FR. Homo- and Heterogeneous Benzyl Alcohol Catalytic Oxidation Promoted by Mononuclear Copper(II) Complexes: The Influence of the Ligand upon Product Conversion. Molecules 2024; 29:2634. [PMID: 38893509 PMCID: PMC11173773 DOI: 10.3390/molecules29112634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The catalytic properties of three copper complexes, [Cu(en)2](ClO4)2 (1), [Cu(amp)2](ClO4)2, (2) and [Cu(bpy)2](ClO4)2 (3) (where en = ethylenediamine, amp = 2-aminomethylpyridine and bpy = 2,2'-bipyridine), were explored upon the oxidation of benzyl alcohol (BnOH). Maximized conversions of the substrates to their respective products were obtained using a multivariate analysis approach, a powerful tool that allowed multiple variables to be optimized simultaneously, thus creating a more economical, fast and effective technique. Considering the studies in a fluid solution (homogeneous), all complexes strongly depended on the amount of the oxidizing agent (H2O2), followed by the catalyst load. In contrast, time seemed to be statistically less relevant for complexes 1 and 3 and not relevant for 2. All complexes showed high selectivity in their optimized conditions, and only benzaldehyde (BA) was obtained as a viable product. Quantitatively, the catalytic activity observed was 3 > 2 > 1, which is related to the π-acceptor character of the ligands employed in the study. Density functional theory (DFT) studies could corroborate this feature by correlating the geometric index for square pyramid Cu(II)-OOH species, which should be generated in the solution during the catalytic process. Complex 3 was successfully immobilized in silica-coated magnetic nanoparticles (Fe3O4@SiO2), and its oxidative activity was evaluated through heterogenous catalysis assays. Substrate conversion promoted by 3-Fe3O4@SiO2 generated only BA as a viable product, and the supported catalyst's recyclability was proven. Reduced catalytic conversions in the presence of the radical scavenger (2,2,6,6-tetrametil-piperidi-1-nil)oxil (TEMPO) indicate that radical and non-radical mechanisms are involved.
Collapse
Affiliation(s)
- Larissa Chimilouski
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - William H. Slominski
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Ana I. Tillmann
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Daniella Will
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Aaron M. dos Santos
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Giliandro Farias
- Departamento de Química, Centro de Ciências Física e Matemáticas, Universidade Federal de Santa Catarina (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, Florianópolis 88040-900, SC, Brazil
| | - Edmar Martendal
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Karine P. Naidek
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| | - Fernando R. Xavier
- Departamento de Química, Centro de Ciências Tecnológicas (CCT), Universidade do Estado de Santa Catarina (UDESC), R. Paulo Malschitzky, 200 Zona Industrial Norte, Joinville 89219-710, SC, Brazil (A.I.T.); (D.W.)
| |
Collapse
|
7
|
Mydy LS, Hungerford J, Chigumba DN, Konwerski JR, Jantzi SC, Wang D, Smith JL, Kersten RD. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis. Nat Chem Biol 2024; 20:530-540. [PMID: 38355722 PMCID: PMC11049724 DOI: 10.1038/s41589-024-01552-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
The biosynthetic dogma of ribosomally synthesized and posttranslationally modified peptides (RiPP) involves enzymatic intermolecular modification of core peptide motifs in precursor peptides. The plant-specific BURP-domain protein family, named after their four founding members, includes autocatalytic peptide cyclases involved in the biosynthesis of side-chain-macrocyclic plant RiPPs. Here we show that AhyBURP, a representative of the founding Unknown Seed Protein-type BURP-domain subfamily, catalyzes intramolecular macrocyclizations of its core peptide during the sequential biosynthesis of monocyclic lyciumin I via glycine-tryptophan crosslinking and bicyclic legumenin via glutamine-tyrosine crosslinking. X-ray crystallography of AhyBURP reveals the BURP-domain fold with two type II copper centers derived from a conserved stapled-disulfide and His motif. We show the macrocyclization of lyciumin-C(sp3)-N-bond formation followed by legumenin-C(sp3)-O-bond formation requires dioxygen and radical involvement based on enzyme assays in anoxic conditions and isotopic labeling. Our study expands enzymatic intramolecular modifications beyond catalytic moiety and chromophore biogenesis to RiPP biosynthesis.
Collapse
Affiliation(s)
- Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| | - Jordan Hungerford
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Desnor N Chigumba
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Sarah C Jantzi
- Plasma Chemistry Laboratory, Center for Applied Isotope Studies, University of Georgia, Athens, GA, USA
| | - Di Wang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Janet L Smith
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Suarez AFL, Nguyen TQN, Chang L, Tooh YW, Yong RHS, Leow LC, Koh IYF, Chen H, Koh JWH, Selvanayagam A, Lim V, Tan YE, Agatha I, Winnerdy FR, Morinaka BI. Functional and Promiscuity Studies of Three-Residue Cyclophane Forming Enzymes Show Nonnative C-C Cross-Linked Products and Leader-Dependent Cyclization. ACS Chem Biol 2024; 19:774-783. [PMID: 38417140 DOI: 10.1021/acschembio.3c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Enzymes catalyzing peptide macrocyclization are important biochemical tools in drug discovery. The three-residue cyclophane-forming enzymes (3-CyFEs) are an emerging family of post-translational modifying enzymes that catalyze the formation of three-residue peptide cyclophanes. In this report, we introduce three additional 3-CyFEs, including ChlB, WnsB, and FnnB, that catalyze cyclophane formation on Tyr, Trp, and Phe, respectively. To understand the promiscuity of these enzymes and those previously reported (MscB, HaaB, and YxdB), we tested single amino acid substitutions at the three-residue motif of modification (Ω1X2X3, Ω1 = aromatic). Collectively, we observe that substrate promiscuity is observed at the Ω1 and X2 positions, but a greater specificity is observed for the X3 residue. Two nonnative cyclophane products were characterized showing a Phe-C3 to Arg-Cβ and His-C2 to Pro-Cβ cross-links, respectively. We also tested the leader dependence of selected 3-CyFEs and show that a predicted helix region is important for cyclophane formation. These results demonstrate the biocatalytic potential of these maturases and allow rational design of substrates to obtain a diverse array of genetically encoded 3-residue cyclophanes.
Collapse
Affiliation(s)
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Litao Chang
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi Wei Tooh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Rubin How Sheng Yong
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Li Chuan Leow
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Ivan Yu Fan Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Huiyi Chen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Jeffery Wei Heng Koh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Vernon Lim
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi En Tan
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Irene Agatha
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Fernaldo R Winnerdy
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
9
|
Wang S, Wu K, Tang YJ, Deng H. Dehydroamino acid residues in bioactive natural products. Nat Prod Rep 2024; 41:273-297. [PMID: 37942836 PMCID: PMC10880069 DOI: 10.1039/d3np00041a] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Indexed: 11/10/2023]
Abstract
Covering: 2000 to up to 2023α,β-Dehydroamino acids (dhAAs) are unsaturated nonproteinogenic amino acids found in a wide array of naturally occurring peptidyl metabolites, predominantly those from bacteria. Other organisms, such as fungi, higher plants and marine invertebrates, have also been found to produce dhAA-containing peptides. The α,β-unsaturation in dhAAs has profound effects on the properties of these molecules. They display significant synthetic flexibility, readily undergoing reactions such as Michael additions, transition-metal-catalysed cross-couplings, and cycloadditions. These residues in peptides/proteins also exhibit great potential in bioorthogonal applications using click chemistry. Peptides containing contiguous dhAA residues have been extensively investigated in the field of foldamers, self-assembling supermolecules that mimic biomacromolecules such as proteins to fold into well-defined conformations. dhAA residues in these peptidyl materials tend to form a 2.05-helix. As a result, stretches of dhAA residues arrange in an extended conformation. In particular, peptidyl foldamers containing β-enamino acid units display interesting conformational, electronic, and supramolecular aggregation properties that can be modulated by light-dependent E-Z isomerization. Among approximately 40 dhAAs found in the natural product inventory, dehydroalanine (Dha) and dehydrobutyrine (Dhb) are the most abundant. Dha is the simplest dehydro-α-amino acid, or α-dhAA, without any geometrical isomers, while its re-arranged isomer, 3-aminoacrylic acid (Aaa or ΔβAla), is the simplest dehydro-β-amino acid, or β-enamino acid, and displays E/Z isomerism. Dhb is the simplest α-dhAA that exhibits E/Z isomerism. The Z-isomer of Dhb (Z-Dhb) is sterically favourable and is present in the majority of naturally occurring peptides containing Dhb residues. Dha and Z-Dhb motifs are commonly found in ribosomally synthesized and post-translationally modified peptides (RiPPs). In the last decade, the formation of Dha and Dhb motifs in RiPPs has been extensively investigated, which will be briefly discussed in this review. The formation of other dhAA residues in natural products (NPs) is, however, less understood. In this review, we will discuss recent advances in the biosynthesis of peptidyl NPs containing unusual dhAA residues and cryptic dhAA residues. The proposed biosynthetic pathways of these natural products will also be discussed.
Collapse
Affiliation(s)
- Shan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Kewen Wu
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, UK.
| |
Collapse
|
10
|
Ahmed N, Zhang B, Chachar Z, Li J, Xiao G, Wang Q, Hayat F, Deng L, Narejo MUN, Bozdar B, Tu P. Micronutrients and their effects on Horticultural crop quality, productivity and sustainability. SCIENTIA HORTICULTURAE 2024; 323:112512. [DOI: 10.1016/j.scienta.2023.112512] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Lima ST, Ampolini BG, Underwood EB, Graf TN, Earp CE, Khedi IC, Pasquale MA, Chekan JR. A Widely Distributed Biosynthetic Cassette Is Responsible for Diverse Plant Side Chain Cross-Linked Cyclopeptides. Angew Chem Int Ed Engl 2023; 62:e202218082. [PMID: 36529706 PMCID: PMC10107690 DOI: 10.1002/anie.202218082] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Cyclopeptide alkaloids are an abundant class of plant cyclopeptides with over 200 analogs described and bioactivities ranging from analgesic to antiviral. While these natural products have been known for decades, their biosynthetic basis remains unclear. Using a transcriptome-mining approach, we link the cyclopeptide alkaloids from Ceanothus americanus to dedicated RiPP precursor peptides and identify new, widely distributed split BURP peptide cyclase containing gene clusters. Guided by our bioinformatic analysis, we identify and isolate new cyclopeptides from Coffea arabica, which we named arabipeptins. Reconstitution of the enzyme activity for the BURP found in the biosynthesis of arabipeptin A validates the activity of the newly discovered split BURP peptide cyclases. These results expand our understanding of the biosynthetic pathways responsible for diverse cyclic plant peptides and suggest that these side chain cross-link modifications are widely distributed in eudicots.
Collapse
Affiliation(s)
- Stella T Lima
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Brigitte G Ampolini
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Ethan B Underwood
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Tyler N Graf
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Cody E Earp
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Imani C Khedi
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| |
Collapse
|
12
|
Ghazagh F, Bagherieh-Najjar MB, Nezamdoost T. Unraveling the interaction of copper, cadmium, calcium, and nitrate on phenolics, flavonoids, and shikonin contents of Onosma dichroantha calli by statistical modeling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43804-43816. [PMID: 36662436 DOI: 10.1007/s11356-023-25187-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Increased anthropogenic activities have led to the accumulation of certain minerals to ecotoxic levels in the environment, which could influence the secondary metabolism of plants. Shikonin, an exudate from the roots of Onosma dichroantha, is a secondary metabolite involved in plant defense and invasion success; however, the interactive effects of copper (Cu), cadmium (Cd), calcium (Ca), and nitrate (NO3) in shikonin biosynthesis and accumulation are not known. Here, the individual, curvilinear, and pairwise effects of these elements on shikonin biosynthesis in callus culture of O. dichroantha have been investigated by means of a statistical modeling approach and multivariate regression analyses. Although the main effects of the examined minerals seemed to be suppressive, their combined interactions could enhance callus growth and secondary metabolism of O. dichroantha. Accordingly, maximum values were recorded for the callus growth index (6.85 at 23.25 μM Cu, 70 mM NO3, 1 mM Ca, 27.50 μM Cd), total phenolics (24.83 mg gallic acid equivalent at 9.75 μM Cu, 70 mM NO3, 1 mM Ca, 62.50 μM Cd), total flavonoids (6.12 mg quercetin equivalent at 30 μM Cu, 80 mM NO3, 1.5 mM Ca, 45 μM Cd), and shikonin (24.33 μg g-1 FW at 9.75 μM Cu, 70 mM NO3, 2 mM Ca, 27.5 μM Cd). Overall, these data show that increasing concentrations of the examined minerals in culture medium can markedly influence the secondary metabolism of O. dichroantha cells and suggest that a comparable phenomenon may exist in a wider range of medicinal plants, grown on polluted environments, which may affect their invasive capabilities.
Collapse
Affiliation(s)
- Fatemeh Ghazagh
- Department of Biology, Golestan University, Shahid Beheshti Ave, Gorgan, Golestan, Iran
| | | | - Tahereh Nezamdoost
- Department of Biology, Golestan University, Shahid Beheshti Ave, Gorgan, Golestan, Iran
| |
Collapse
|
13
|
Sugiyama R, Suarez AFL, Morishita Y, Nguyen TQN, Tooh YW, Roslan MNHB, Lo Choy J, Su Q, Goh WY, Gunawan GA, Wong FT, Morinaka BI. The Biosynthetic Landscape of Triceptides Reveals Radical SAM Enzymes That Catalyze Cyclophane Formation on Tyr- and His-Containing Motifs. J Am Chem Soc 2022; 144:11580-11593. [PMID: 35729768 DOI: 10.1021/jacs.2c00521] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peptide-derived cyclophanes inhabit a unique niche in the chemical space of macrocyclic peptides with several examples of pharmaceutical importance. Although both synthetic and biocatalytic methods are available for constructing these macrocycles, versatile (bio)catalysts able to incorporate a variety of amino acids that compose the macrocycle would be useful for the creation of diverse peptide cyclophanes. In this report, we synergized the use of bioinformatic tools to map the biosynthetic landscape of radical SAM enzymes (3-CyFEs) that catalyze three-residue cyclophane formation in the biosynthesis of a new family of RiPP natural products, the triceptides. This analysis revealed 3940 (3113 unique) putative precursor sequences predicted to be modified by 3-CyFEs. Several uncharacterized maturase systems were identified that encode unique precursor types. Functional studies were carried out in vivo in Escherichia coli to identify modified precursors containing His and Tyr residues. NMR analysis of the products revealed that Tyr and His can also be incorporated into cyclophane macrocycles by 3-CyFEs. Collectively, all aromatic amino acids can be incorporated by 3-CyFEs, and the cyclophane formation strictly occurs via a C(sp2)-C(sp3) cross-link between the (hetero)aromatic ring to Cβ. In addition to 3-CyFEs, we functionally validated an Fe(II)/α-ketoglutarate-dependent hydroxylase, resulting in β-hydroxylated residues within the cyclophane rings. This study reveals the potential breadth of triceptide precursors and a systematic approach for studying these enzymes to broaden the diversity of peptide macrocycles.
Collapse
Affiliation(s)
- Ryosuke Sugiyama
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Yohei Morishita
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Thi Quynh Ngoc Nguyen
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Yi Wei Tooh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | | | - Justin Lo Choy
- Department of Pharmacology and Toxicology, University of Toronto, Toronto M5S 1A8, Canada
| | - Qi Su
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Wei Yang Goh
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| | - Gregory Adrian Gunawan
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore.,Molecular Engineering Lab, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Organic & Biomolecular Chemistry, Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore 138665, Singapore
| | - Fong Tian Wong
- Molecular Engineering Lab, Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore.,Singapore Institute of Food and Biotechnology Innovation, A*STAR, Singapore 138673, Singapore
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
14
|
Kersten RD, Mydy LS, Fallon TR, de Waal F, Shafiq K, Wotring JW, Sexton JZ, Weng JK. Gene-Guided Discovery and Ribosomal Biosynthesis of Moroidin Peptides. J Am Chem Soc 2022; 144:7686-7692. [PMID: 35438481 DOI: 10.1021/jacs.2c00014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Moroidin is a bicyclic plant octapeptide with tryptophan side-chain cross-links, originally isolated as a pain-causing agent from the Australian stinging tree Dendrocnide moroides. Moroidin and its analog celogentin C, derived from Celosia argentea, are inhibitors of tubulin polymerization and, thus, lead structures for cancer therapy. However, low isolation yields from source plants and challenging organic synthesis hinder moroidin-based drug development. Here, we present biosynthesis as an alternative route to moroidin-type bicyclic peptides and report that they are ribosomally synthesized and posttranslationally modified peptides (RiPPs) derived from BURP-domain peptide cyclases in plants. By mining 793 plant transcriptomes for moroidin core peptide motifs within BURP-domain precursor peptides, we identified a moroidin cyclase in Japanese kerria, which catalyzes the installation of the tryptophan-indole-centered macrocyclic bonds of the moroidin bicyclic motif in the presence of cupric ions. Based on the kerria moroidin cyclase, we demonstrate the feasibility of producing diverse moroidins including celogentin C in transgenic tobacco plants and report specific cytotoxicity of celogentin C against a lung adenocarcinoma cancer cell line. Our study sets the stage for future biosynthetic development of moroidin-based therapeutics and highlights that mining plant transcriptomes can reveal bioactive cyclic peptides and their underlying cyclases from new source plants.
Collapse
Affiliation(s)
- Roland D Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lisa S Mydy
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Timothy R Fallon
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Floris de Waal
- Bioinformatics Group, Wageningen University, Wageningen 6700AP, The Netherlands
| | - Khadija Shafiq
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jesse W Wotring
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jonathan Z Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.,Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, Massachusetts 02142, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| |
Collapse
|