1
|
Demircan N, Sonmez MC, Akyol TY, Ozgur R, Turkan I, Dietz KJ, Uzilday B. Alternative electron sinks in chloroplasts and mitochondria of halophytes as a safety valve for controlling ROS production during salinity. PHYSIOLOGIA PLANTARUM 2024; 176:e14397. [PMID: 38894507 DOI: 10.1111/ppl.14397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Electron flow through the electron transport chain (ETC) is essential for oxidative phosphorylation in mitochondria and photosynthesis in chloroplasts. Electron fluxes depend on environmental parameters, e.g., ionic and osmotic conditions and endogenous factors, and this may cause severe imbalances. Plants have evolved alternative sinks to balance the reductive load on the electron transport chains in order to avoid overreduction, generation of reactive oxygen species (ROS), and to cope with environmental stresses. These sinks act primarily as valves for electron drainage and secondarily as regulators of tolerance-related metabolism, utilizing the excess reductive energy. High salinity is an environmental stressor that stimulates the generation of ROS and oxidative stress, which affects growth and development by disrupting the redox homeostasis of plants. While glycophytic plants are sensitive to high salinity, halophytic plants tolerate, grow, and reproduce at high salinity. Various studies have examined the ETC systems of glycophytic plants, however, information about the state and regulation of ETCs in halophytes under non-saline and saline conditions is scarce. This review focuses on alternative electron sinks in chloroplasts and mitochondria of halophytic plants. In cases where information on halophytes is lacking, we examined the available knowledge on the relationship between alternative sinks and gradual salinity resilience of glycophytes. To this end, transcriptional responses of involved components of photosynthetic and respiratory ETCs were compared between the glycophyte Arabidopsis thaliana and the halophyte Schrenkiella parvula, and the time-courses of these transcripts were examined in A. thaliana. The observed regulatory patterns are discussed in the context of reactive molecular species formation in halophytes and glycophytes.
Collapse
Affiliation(s)
- Nil Demircan
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | | | - Turgut Yigit Akyol
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rengin Ozgur
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| | - Ismail Turkan
- Department of Soil and Plant Nutrition, Faculty of Agricultural Sciences and Technologies, Yasar University, İzmir, Türkiye
| | - Karl-Josef Dietz
- Faculty of Biology, Department of Biochemistry and Physiology of Plants, University of Bielefeld, Bielefeld, Germany
| | - Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Overlander-Chen M, Carlson CH, Fiedler JD, Yang S. Plastid terminal oxidase is required for chloroplast biogenesis in barley. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1179-1190. [PMID: 37985448 DOI: 10.1111/tpj.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
Chloroplast biogenesis is critical for crop biomass and economic yield. However, chloroplast development is a very complicated process coordinated by cross-communication between the nucleus and plastids, and the underlying mechanisms have not been fully revealed. To explore the regulatory machinery for chloroplast biogenesis, we conducted map-based cloning of the Grandpa 1 (Gpa1) gene regulating chloroplast development in barley. The spontaneous mutation gpa1.a caused a variegation phenotype of the leaf, dwarfed growth, reduced grain yield, and increased tiller number. Genetic mapping anchored the Gpa1 gene onto 2H within a gene cluster functionally related to photosynthesis or chloroplast differentiation. One gene (HORVU.MOREX.r3.2HG0213170) in the delimited region encodes a putative plastid terminal oxidase (PTOX) in thylakoid membranes, which is homologous to IMMUTANS (IM) of Arabidopsis. The IM gene is required for chloroplast biogenesis and maintenance of functional thylakoids in Arabidopsis. Using CRISPR technology and gene transformation, we functionally validated that the PTOX-encoding gene, HORVU.MOREX.r3.2HG0213170, is the causal gene of Gpa1. Gene expression and chemical analysis revealed that the carotenoid biosynthesis pathway is suppressed by the gpa1 mutation, rendering mutants vulnerable to photobleaching. Our results showed that the overtillering associated with the gpa1 mutation was caused by the lower accumulation of carotenoid-derived strigolactones (SLs) in the mutant. The cloning of Gpa1 not only improves our understanding of the molecular mechanisms underlying chloroplast biosynthesis but also indicates that the PTOX activity is conserved between monocots and dicots for the establishment of the photosynthesis factory.
Collapse
Affiliation(s)
- Megan Overlander-Chen
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, North Dakota, 58102, USA
| | - Craig H Carlson
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, North Dakota, 58102, USA
- Department of Plant Sciences, North Dakota State University, North Dakota, 58102, USA
| | - Jason D Fiedler
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, North Dakota, 58102, USA
- Department of Plant Sciences, North Dakota State University, North Dakota, 58102, USA
| | - Shengming Yang
- USDA-ARS Cereals Research Unit, Edward T. Schafer Agriculture Research Center, Fargo, North Dakota, 58102, USA
- Department of Plant Sciences, North Dakota State University, North Dakota, 58102, USA
- Department of Plant Pathology, North Dakota State University, North Dakota, 58102, USA
| |
Collapse
|
3
|
Cao Y, Hu J, Hou J, Fu C, Zou X, Han X, Jia P, Sun C, Xu Y, Xue Y, Zou Y, Liu X, Chen X, Li G, Guo J, Xu M, Fu A. Vacuolar Sugar Transporter TMT2 Plays Crucial Roles in Germination and Seedling Development in Arabidopsis. Int J Mol Sci 2023; 24:15852. [PMID: 37958835 PMCID: PMC10647555 DOI: 10.3390/ijms242115852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Vacuolar sugar transporters transport sugar across the tonoplast, are major players in maintaining sugar homeostasis, and therefore play vital roles in plant growth, development, and biomass yield. In this study, we analyzed the physiological roles of the tonoplast monosaccharide transporter 2 (TMT2) in Arabidopsis. In contrast to the wild type (WT) that produced uniform seedlings, the tmt2 mutant produced three types of offspring: un-germinated seeds (UnG), seedlings that cannot form true leaves (tmt2-S), and seedlings that develop normally (tmt2-L). Sucrose, glucose, and fructose can substantially, but not completely, rescue the abnormal phenotypes of the tmt2 mutant. Abnormal cotyledon development, arrested true leaf development, and abnormal development of shoot apical meristem (SAM) were observed in tmt2-S seedlings. Cotyledons from the WT and tmt2-L seedlings restored the growth of tmt2-S seedlings through micrografting. Moreover, exogenous sugar sustained normal growth of tmt2-S seedlings with cotyledon removed. Finally, we found that the TMT2 deficiency resulted in growth defects, most likely via changing auxin signaling, target of rapamycin (TOR) pathways, and cellular nutrients. This study unveiled the essential functions of TMT2 for seed germination and initial seedling development, ensuring cotyledon function and mobilizing sugars from cotyledons to seedlings. It also expanded the current knowledge on sugar metabolism and signaling. These findings have fundamental implications for enhancing plant biomass production or seed yield in future agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Min Xu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| | - Aigen Fu
- Chinese Education Ministry’s Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, Shaanxi Key Laboratory for Carbon Neutral Technology, Shaanxi Academy of Basic Sciences, College of Life Sciences, Northwest University, Xi’an 710069, China; (Y.C.); (J.H.); (J.H.); (C.F.); (X.Z.); (X.H.); (P.J.); (C.S.); (Y.X.); (Y.X.); (Y.Z.); (X.L.); (X.C.); (G.L.); (J.G.)
| |
Collapse
|
4
|
Garmash EV. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:43-53. [PMID: 36245276 DOI: 10.1111/plb.13477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Mitochondrial alternative oxidase is an important protein involved in maintaining cellular metabolic and energy balance, especially under stress conditions. AOX genes knockout is aimed at revealing the functions of AOX genes. Under unfavourable conditions, AOX-suppressed plants (mainly based on Arabidopsis AOX1a-knockout lines) usually experience strong oxidative stress. However, a compensation effect, which consists of the absence of AOX1a leading to an increase in defence response mechanisms, concomitant with a decrease in ROS content, has also been demonstrated. This review briefly describes the possible mechanisms underlying the compensation effect upon the suppression of AOX1a. Information about mitochondrial retrograde regulation of AOX is given. The importance of ROS and mitochondrial membrane potential in triggering the signal transmission from mitochondria in the absence of AOX or disturbance of mitochondrial electron transport chain functions is indicated. The few available data on the response of the cell to the absence of AOX at the level of changes in the hormonal balance and the reactions of chloroplasts are presented. The decrease in the relative amount of reduced ascorbate at stable ROS levels as a result of compensation in AOX1a-suppressed plants is proposed as a sign of stress development. Obtaining direct evidence on the mechanisms and signalling pathways involved in AOX modulation in the genome should facilitate a deeper understanding of the role of AOX in the integration of cellular signalling pathways.
Collapse
Affiliation(s)
- E V Garmash
- Institute of Biology, Komi Scientific Centre, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| |
Collapse
|
5
|
Garmash EV, Dymova OV, Silina EV, Malyshev RV, Belykh ES, Shelyakin MA, Velegzhaninov IO. AOX1a Expression in Arabidopsis thaliana Affects the State of Chloroplast Photoprotective Systems under Moderately High Light Conditions. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223030. [PMID: 36432760 PMCID: PMC9697105 DOI: 10.3390/plants11223030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 06/01/2023]
Abstract
Alternative oxidase (AOX) in the mitochondrial electron transport chain is considered important for sustaining photosynthesis under high light conditions. Here, we examined the effects of the AOX pathway on the state of chloroplast photoprotective systems. Arabidopsis thaliana plants (4 weeks old), comprising three genotypes (wild type [WT], overexpressing [XX-2] and antisense [AS-12] lines for AOX1a), were exposed to moderately high light conditions (MHL, 400 μmol m-2 s-1) in a short-term experiment (8 h). After 8 h of MHL, the WT and XX-2 plants showed stable non-photochemical quenching (qN) and violaxanthin cycle activity. Antisense plants displayed the lowest level of qN and a lower de-epoxidation state (DEPS) relative to plants of the same line after 4-6 h MHL, as well as compared to WT and XX-2 plants after 8 h MHL. The decline in DEPS in AS-12 plants was attributed to an insufficient violaxanthin de-epoxidase activity, which in turn was associated with a decrease in reduced ascorbate levels in the chloroplasts and leaves. Simultaneously, gene expression and the activity of ascorbate peroxidase in the antisense line increased after 8 h of MHL, supporting the compensatory effect of the antioxidant system when AOX1a expression is suppressed. This study emphasizes the role played by AOX in modulating the photoprotection processes and in the maintenance of relationships between mitochondria and chloroplasts by influencing ascorbate content.
Collapse
|
6
|
Campos MD, Campos C, Nogales A, Cardoso H. Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112369. [PMID: 34834732 PMCID: PMC8625938 DOI: 10.3390/plants10112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 05/28/2023]
Abstract
Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Amaia Nogales
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| |
Collapse
|