1
|
Zeng Y, Xu X, Jiang J, Lin S, Fan Z, Meng Y, Maimaiti A, Wu P, Ren J. Genome-wide association analysis and genomic selection for leaf-related traits of maize. PLoS One 2025; 20:e0323140. [PMID: 40402953 PMCID: PMC12097558 DOI: 10.1371/journal.pone.0323140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 04/01/2025] [Indexed: 05/24/2025] Open
Abstract
Maize is an important food crop worldwide. The length, width, and area of leaves are crucial traits of plant architecture and further influencing plant density, photosynthesis, and crop yield. To dissect the genetic architecture of leaf length, leaf width, and leaf area, a multi-parents doubled haploid (DH) population was used for genome-wide association study (GWAS) and genomic selection (GS). The length, width, and area of the first leaf above the uppermost ear, the uppermost ear leaf, and the first leaf below the uppermost ear were evaluated in multi-environment trials. Using BLINK and FarmCPU for GWAS, 19 significant single nucleotide polymorphisms (SNPs) on chromosomes 1, 2, 5, 6, 8, 9, and 10 were associated with leaf length, 49 SNPs distributed over all 10 chromosomes were associated with leaf width, and 37 SNPs distributed on all 10 chromosomes except for chromosome 3 were associated with leaf area. The phenotypic variation explained (PVE) by each QTL ranged from 0.05% to 27.46%. Fourteen pleiotropic SNPs were detected by at least two leaf-related traits. A total of 57 candidate genes were identified for leaf-related traits, of which 44 were annotated with known functions. Candidate genes Zm00001d032866, Zm00001D022209, and Zm00001d001980 are involved in leaf senescence. Zm00001d026130, Zm00001d002429, Zm00001d023225, and Zm00001d046767 play important roles in leaf development. GS analysis showed that when 60% of the total genotypes was used as the training population and 3000 SNPs were used for prediction, moderate prediction accuracy was obtained for leaf length, leaf width, and leaf area. The prediction accuracy would be improved by using top significantly associated SNPs for GS. The current study provides a better understanding of the genetic basis of leaf length, leaf width, and leaf area, and valuable information for improving plant architecture by implementing GS.
Collapse
Affiliation(s)
- Yukang Zeng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Xiaoming Xu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jiale Jiang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Shaohang Lin
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zehui Fan
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yao Meng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Atikaimu Maimaiti
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Penghao Wu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jiaojiao Ren
- College of Agronomy, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
2
|
Amadu MK, Beyene Y, Chaikam V, Tongoona PB, Danquah EY, Ifie BE, Burgueno J, Prasanna BM, Gowda M. Genome-wide association mapping and genomic prediction analyses reveal the genetic architecture of grain yield and agronomic traits under drought and optimum conditions in maize. BMC PLANT BIOLOGY 2025; 25:135. [PMID: 39893411 PMCID: PMC11786572 DOI: 10.1186/s12870-025-06135-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Drought is a major abiotic stress in sub-Saharan Africa, impacting maize growth and development leading to severe yield loss. Drought tolerance is a complex trait regulated by multiple genes, making direct grain yield selection ineffective. To dissect the genetic architecture of grain yield and flowering traits under drought stress, a genome-wide association study (GWAS) was conducted on a panel of 236 maize lines testcrossed and evaluated under managed drought and optimal growing conditions in multiple environments using seven multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO, and FARMCPU) from mrMLM and GAPIT R packages. Genomic prediction with RR-BLUP model was applied on BLUEs across locations under optimum and drought conditions. RESULTS A total of 172 stable and reliable quantitative trait nucleotides (QTNs) were identified, of which 77 are associated with GY, AD, SD, ASI, PH, EH, EPO and EPP under drought and 95 are linked to GY, AD, SD, ASI, PH, EH, EPO and EPP under optimal conditions. Among these QTNs, 17 QTNs explained over 10% of the phenotypic variation (R2 ≥ 10%). Furthermore, 43 candidate genes were discovered and annotated. Two major candidate genes, Zm00001eb041070 closely associated with grain yield near peak QTN, qGY_DS1.1 (S1_216149215) and Zm00001eb364110 closely related to anthesis-silking interval near peak QTN, qASI_DS8.2 (S8_167256316) were identified, encoding AP2-EREBP transcription factor 60 and TCP-transcription factor 20, respectively under drought stress. Haplo-pheno analysis identified superior haplotypes for qGY_DS1.1 (S1_216149215) associated with the higher grain yield under drought stress. Genomic prediction revealed moderate to high prediction accuracies under optimum and drought conditions. CONCLUSION The lines carrying superior haplotypes can be used as potential donors in improving grain yield under drought stress. Integration of genomic selection with GWAS results leads not only to an increase in the prediction accuracy but also to validate the function of the identified candidate genes as well increase in the accumulation of favorable alleles with minor and major effects in elite breeding lines. This study provides valuable insight into the genetic architecture of grain yield and secondary traits under drought stress.
Collapse
Affiliation(s)
- Manigben Kulai Amadu
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- CSIR-Savanna Agricultural Research Institute, PO. Box 52, Tamale, Nyankpala, Ghana
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| | - Vijay Chaikam
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Pangirayi B Tongoona
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Eric Y Danquah
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
| | - Beatrice E Ifie
- West Africa Centre for Crop Improvement (WACCI), University of Ghana, PMB 30 Legon, Accra, Ghana
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, Wales, SY23 3EE, UK
| | - Juan Burgueno
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, El Batán, Edo. de Mexico, CP 52640, Mexico
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), C/O: World Agroforestry Centre (ICRAF), United Nations Avenue, Gigiri, P.O. Box, Nairobi, 1041-00621, Kenya.
| |
Collapse
|
3
|
Diogo-Jr R, de Resende Von Pinho EV, Pinto RT, Zhang L, Condori-Apfata JA, Pereira PA, Vilela DR. Maize heat shock proteins-prospection, validation, categorization and in silico analysis of the different ZmHSP families. STRESS BIOLOGY 2023; 3:37. [PMID: 37981586 PMCID: PMC10482818 DOI: 10.1007/s44154-023-00104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/05/2023] [Indexed: 11/21/2023]
Abstract
Among the plant molecular mechanisms capable of effectively mitigating the effects of adverse weather conditions, the heat shock proteins (HSPs), a group of chaperones with multiple functions, stand out. At a time of full progress on the omic sciences, they look very promising in the genetic engineering field, especially in order to conceive superior genotypes, potentially tolerant to abiotic stresses (AbSts). Recently, some works concerning certain families of maize HSPs (ZmHSPs) were published. However, there was still a lack of a study that, with a high degree of criteria, would fully conglomerate them. Using distinct but complementary strategies, we have prospected as many ZmHSPs candidates as possible, gathering more than a thousand accessions. After detailed data mining, we accounted for 182 validated ones, belonging to seven families, which were subcategorized into classes with potential for functional parity. In them, we identified dozens of motifs with some degree of similarity with proteins from different kingdoms, which may help explain some of their still poorly understood means of action. Through in silico and in vitro approaches, we compared their expression levels after controlled exposure to several AbSts' sources, applied at diverse tissues, on varied phenological stages. Based on gene ontology concepts, we still analyzed them from different perspectives of term enrichment. We have also searched, in model plants and close species, for potentially orthologous genes. With all these new insights, which culminated in a plentiful supplementary material, rich in tables, we aim to constitute a fertile consultation source for those maize researchers attracted by these interesting stress proteins.
Collapse
Affiliation(s)
- Rubens Diogo-Jr
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA.
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil.
| | | | - Renan Terassi Pinto
- Faculty of Philosophy and Sciences at Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, SP, (14040-901), Brazil
| | - Lingrui Zhang
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
| | - Jorge Alberto Condori-Apfata
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, (47907), USA
- Faculty of Engineering and Agricultural Sciences, Universidad Nacional Toribio Rodriguez de Mendoza de Amazonas (UNTRM), Chachapoyas, AM, (01001), Peru
| | - Paula Andrade Pereira
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| | - Danielle Rezende Vilela
- Department of Agriculture, Federal University of Lavras (UFLA), Lavras, MG, (37200-900), Brazil
| |
Collapse
|
4
|
Mora-Poblete F, Maldonado C, Henrique L, Uhdre R, Scapim CA, Mangolim CA. Multi-trait and multi-environment genomic prediction for flowering traits in maize: a deep learning approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1153040. [PMID: 37593046 PMCID: PMC10428628 DOI: 10.3389/fpls.2023.1153040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 07/12/2023] [Indexed: 08/19/2023]
Abstract
Maize (Zea mays L.), the third most widely cultivated cereal crop in the world, plays a critical role in global food security. To improve the efficiency of selecting superior genotypes in breeding programs, researchers have aimed to identify key genomic regions that impact agronomic traits. In this study, the performance of multi-trait, multi-environment deep learning models was compared to that of Bayesian models (Markov Chain Monte Carlo generalized linear mixed models (MCMCglmm), Bayesian Genomic Genotype-Environment Interaction (BGGE), and Bayesian Multi-Trait and Multi-Environment (BMTME)) in terms of the prediction accuracy of flowering-related traits (Anthesis-Silking Interval: ASI, Female Flowering: FF, and Male Flowering: MF). A tropical maize panel of 258 inbred lines from Brazil was evaluated in three sites (Cambira-2018, Sabaudia-2018, and Iguatemi-2020 and 2021) using approximately 290,000 single nucleotide polymorphisms (SNPs). The results demonstrated a 14.4% increase in prediction accuracy when employing multi-trait models compared to the use of a single trait in a single environment approach. The accuracy of predictions also improved by 6.4% when using a single trait in a multi-environment scheme compared to using multi-trait analysis. Additionally, deep learning models consistently outperformed Bayesian models in both single and multiple trait and environment approaches. A complementary genome-wide association study identified associations with 26 candidate genes related to flowering time traits, and 31 marker-trait associations were identified, accounting for 37%, 37%, and 22% of the phenotypic variation of ASI, FF and MF, respectively. In conclusion, our findings suggest that deep learning models have the potential to significantly improve the accuracy of predictions, regardless of the approach used and provide support for the efficacy of this method in genomic selection for flowering-related traits in tropical maize.
Collapse
Affiliation(s)
| | - Carlos Maldonado
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Luma Henrique
- Department of Agronomy, State University of Maringá, Paraná, Brazil
| | - Renan Uhdre
- Department of Agronomy, State University of Maringá, Paraná, Brazil
| | | | | |
Collapse
|
5
|
Oteng-Frimpong R, Karikari B, Sie EK, Kassim YB, Puozaa DK, Rasheed MA, Fonceka D, Okello DK, Balota M, Burow M, Ozias-Akins P. Multi-locus genome-wide association studies reveal genomic regions and putative candidate genes associated with leaf spot diseases in African groundnut ( Arachis hypogaea L.) germplasm. FRONTIERS IN PLANT SCIENCE 2023; 13:1076744. [PMID: 36684745 PMCID: PMC9849250 DOI: 10.3389/fpls.2022.1076744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Early leaf spot (ELS) and late leaf spot (LLS) diseases are the two most destructive groundnut diseases in Ghana resulting in ≤ 70% yield losses which is controlled largely by chemical method. To develop leaf spot resistant varieties, the present study was undertaken to identify single nucleotide polymorphism (SNP) markers and putative candidate genes underlying both ELS and LLS. In this study, six multi-locus models of genome-wide association study were conducted with the best linear unbiased predictor obtained from 294 African groundnut germplasm screened for ELS and LLS as well as image-based indices of leaf spot diseases severity in 2020 and 2021 and 8,772 high-quality SNPs from a 48 K SNP array Axiom platform. Ninety-seven SNPs associated with ELS, LLS and five image-based indices across the chromosomes in the 2 two sub-genomes. From these, twenty-nine unique SNPs were detected by at least two models for one or more traits across 16 chromosomes with explained phenotypic variation ranging from 0.01 - 62.76%, with exception of chromosome (Chr) 08 (Chr08), Chr10, Chr11, and Chr19. Seventeen potential candidate genes were predicted at ± 300 kbp of the stable/prominent SNP positions (12 and 5, down- and upstream, respectively). The results from this study provide a basis for understanding the genetic architecture of ELS and LLS diseases in African groundnut germplasm, and the associated SNPs and predicted candidate genes would be valuable for breeding leaf spot diseases resistant varieties upon further validation.
Collapse
Affiliation(s)
- Richard Oteng-Frimpong
- Groundnut Improvement Program, Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Benjamin Karikari
- Department of Agricultural Biotechnology, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Emmanuel Kofi Sie
- Groundnut Improvement Program, Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Yussif Baba Kassim
- Groundnut Improvement Program, Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Doris Kanvenaa Puozaa
- Groundnut Improvement Program, Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Masawudu Abdul Rasheed
- Groundnut Improvement Program, Council for Scientific and Industrial Research (CSIR)-Savanna Agricultural Research Institute, Tamale, Ghana
| | - Daniel Fonceka
- Centre d’Etude Régional pour l’Amélioration de l’Adaptation àla Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Thiès, Senegal
| | - David Kallule Okello
- Oil Crops Research Program, National Semi-Arid Resources Research Institute (NaSARRI), Soroti, Uganda
| | - Maria Balota
- School of Plant and Environmental Sciences, Tidewater Agricultural Research and Extension Center (AREC), Virginia Tech, Suffolk, VA, United States
| | - Mark Burow
- Texas A&M AgriLife Research and Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Peggy Ozias-Akins
- Institute of Plant Breeding Genetics and Genomics, University of Georgia, Tifton, GA, United States
| |
Collapse
|
6
|
Zuffo LT, DeLima RO, Lübberstedt T. Combining datasets for maize root seedling traits increases the power of GWAS and genomic prediction accuracies. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5460-5473. [PMID: 35608947 PMCID: PMC9467658 DOI: 10.1093/jxb/erac236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/06/2022] [Indexed: 05/13/2023]
Abstract
The identification of genomic regions associated with root traits and the genomic prediction of untested genotypes can increase the rate of genetic gain in maize breeding programs targeting roots traits. Here, we combined two maize association panels with different genetic backgrounds to identify single nucleotide polymorphisms (SNPs) associated with root traits, and used a genome-wide association study (GWAS) and to assess the potential of genomic prediction for these traits in maize. For this, we evaluated 377 lines from the Ames panel and 302 from the Backcrossed Germplasm Enhancement of Maize (BGEM) panel in a combined panel of 679 lines. The lines were genotyped with 232 460 SNPs, and four root traits were collected from 14-day-old seedlings. We identified 30 SNPs significantly associated with root traits in the combined panel, whereas only two and six SNPs were detected in the Ames and BGEM panels, respectively. Those 38 SNPs were in linkage disequilibrium with 35 candidate genes. In addition, we found higher prediction accuracy in the combined panel than in the Ames or BGEM panel. We conclude that combining association panels appears to be a useful strategy to identify candidate genes associated with root traits in maize and improve the efficiency of genomic prediction.
Collapse
Affiliation(s)
- Leandro Tonello Zuffo
- Corteva Agriscience, Rio Verde, GO, Brazil
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
7
|
Muvunyi BP, Zou W, Zhan J, He S, Ye G. Multi-Trait Genomic Prediction Models Enhance the Predictive Ability of Grain Trace Elements in Rice. Front Genet 2022; 13:883853. [PMID: 35812754 PMCID: PMC9257107 DOI: 10.3389/fgene.2022.883853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-trait (MT) genomic prediction models enable breeders to save phenotyping resources and increase the prediction accuracy of unobserved target traits by exploiting available information from non-target or auxiliary traits. Our study evaluated different MT models using 250 rice accessions from Asian countries genotyped and phenotyped for grain content of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), and cadmium (Cd). The predictive performance of MT models compared to a traditional single trait (ST) model was assessed by 1) applying different cross-validation strategies (CV1, CV2, and CV3) inferring varied phenotyping patterns and budgets; 2) accounting for local epistatic effects along with the main additive effect in MT models; and 3) using a selective marker panel composed of trait-associated SNPs in MT models. MT models were not statistically significantly (p < 0.05) superior to ST model under CV1, where no phenotypic information was available for the accessions in the test set. After including phenotypes from auxiliary traits in both training and test sets (MT-CV2) or simply in the test set (MT-CV3), MT models significantly (p < 0.05) outperformed ST model for all the traits. The highest increases in the predictive ability of MT models relative to ST models were 11.1% (Mn), 11.5 (Cd), 33.3% (Fe), 95.2% (Cu) and 126% (Zn). Accounting for the local epistatic effects using a haplotype-based model further improved the predictive ability of MT models by 4.6% (Cu), 3.8% (Zn), and 3.5% (Cd) relative to MT models with only additive effects. The predictive ability of the haplotype-based model was not improved after optimizing the marker panel by only considering the markers associated with the traits. This study first assessed the local epistatic effects and marker optimization strategies in the MT genomic prediction framework and then illustrated the power of the MT model in predicting trace element traits in rice for the effective use of genetic resources to improve the nutritional quality of rice grain.
Collapse
Affiliation(s)
- Blaise Pascal Muvunyi
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wenli Zou
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Junhui Zhan
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sang He
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- *Correspondence: Sang He, ; Guoyou Ye,
| | - Guoyou Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Rice Breeding Innovations Platform, International Rice Research Institute, Los Baños, Philippines
- *Correspondence: Sang He, ; Guoyou Ye,
| |
Collapse
|