1
|
Ayala J, Gautam M, Peissel A, George J, Kariyat R. Pulsating Drought and Insect Herbivory Cause Differential Effects on Soybean ( Glycine max) Genotypes That Vary in Canopy Wilting Speed. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70028. [PMID: 39886654 PMCID: PMC11781298 DOI: 10.1002/pei3.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
As a result of climate change, global temperatures are increasing, and water scarcity is on the rise. Soybean [Glycine max (L.) Merr] is one of the most important crops in the world due to its importance as food and feed. One of the major limiting factors for soybean production is drought, which can cause up to 80% reduction in yield. Therefore, growers and plant breeders are turning to soybean accessions that demonstrate better water use efficiency (WUE). However, in addition to drought, insect herbivory by soybean looper (Chrysodeixis includens, SBL) and fall armyworm (Spodoptera frugiperda, FAW) can also reduce soybean yield by feeding on foliar and floral organs. Using soybean accessions that differ in their wilting speed, we examined the relationship between physiological traits associated with WUE, and how they affect both herbivore and host plant growth and development. Results showed that both fast- and slow-wilting genotypes displayed strong overcompensation in terms of growth and development, but slow-wilting genotypes produced higher-quality pods and seeds. Regardless of treatment effects, FAW fed at a significantly higher rate than SBL despite being less specialized to feed on soybeans. While fast-wilting plants produced more pods than slow-wilting plants regardless of treatment, slow-wilting plants produced heavier pods with larger and heavier seeds. Collectively, we show that despite fast-wilting plants overcompensating in pod production and growth traits, slow-wilting plants may still be better fit through seed functions.
Collapse
Affiliation(s)
- Jessica Ayala
- Department of Entomology & Plant PathologyUniversity of ArkansasFayettevilleArkansasUSA
| | - Manish Gautam
- Department of Entomology & Plant PathologyUniversity of ArkansasFayettevilleArkansasUSA
| | - Adriana Peissel
- Department of Entomology & Plant PathologyUniversity of ArkansasFayettevilleArkansasUSA
| | - Justin George
- Southern Insect Management Research UnitUSDA‐ARSStonevilleMississippiUSA
| | - Rupesh Kariyat
- Department of Entomology & Plant PathologyUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
2
|
Stupar RM, Locke AM, Allen DK, Stacey MG, Ma J, Weiss J, Nelson RT, Hudson ME, Joshi T, Li Z, Song Q, Jedlicka JR, MacIntosh GC, Grant D, Parrott WA, Clemente TE, Stacey G, An YC, Aponte‐Rivera J, Bhattacharyya MK, Baxter I, Bilyeu KD, Campbell JD, Cannon SB, Clough SJ, Curtin SJ, Diers BW, Dorrance AE, Gillman JD, Graef GL, Hancock CN, Hudson KA, Hyten DL, Kachroo A, Koebernick J, Libault M, Lorenz AJ, Mahan AL, Massman JM, McGinn M, Meksem K, Okamuro JK, Pedley KF, Rainey KM, Scaboo AM, Schmutz J, Song B, Steinbrenner AD, Stewart‐Brown BB, Toth K, Wang D, Weaver L, Zhang B, Graham MA, O'Rourke JA. Soybean genomics research community strategic plan: A vision for 2024-2028. THE PLANT GENOME 2024; 17:e20516. [PMID: 39572930 PMCID: PMC11628913 DOI: 10.1002/tpg2.20516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 12/11/2024]
Abstract
This strategic plan summarizes the major accomplishments achieved in the last quinquennial by the soybean [Glycine max (L.) Merr.] genetics and genomics research community and outlines key priorities for the next 5 years (2024-2028). This work is the result of deliberations among over 50 soybean researchers during a 2-day workshop in St Louis, MO, USA, at the end of 2022. The plan is divided into seven traditional areas/disciplines: Breeding, Biotic Interactions, Physiology and Abiotic Stress, Functional Genomics, Biotechnology, Genomic Resources and Datasets, and Computational Resources. One additional section was added, Training the Next Generation of Soybean Researchers, when it was identified as a pressing issue during the workshop. This installment of the soybean genomics strategic plan provides a snapshot of recent progress while looking at future goals that will improve resources and enable innovation among the community of basic and applied soybean researchers. We hope that this work will inform our community and increase support for soybean research.
Collapse
Affiliation(s)
- Robert M. Stupar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Anna M. Locke
- USDA‐ARS Soybean & Nitrogen Fixation Research UnitRaleighNorth CarolinaUSA
| | - Doug K. Allen
- USDA‐ARS Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Minviluz G. Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jianxin Ma
- Department of AgronomyPurdue UniversityWest LafayetteIndianaUSA
| | - Jackie Weiss
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Rex T. Nelson
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | | | - Trupti Joshi
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
- MU Institute for Data Science and InformaticsUniversity of Missouri–ColumbiaColumbiaMissouriUSA
| | - Zenglu Li
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
| | - Qijian Song
- USDA‐ARS Soybean Genomics and Improvement Laboratory, Beltsville Agricultural Research CenterBeltsvilleMarylandUSA
| | | | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIowaUSA
| | - David Grant
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Wayne A. Parrott
- Department of Crop and Soil Sciences, and Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGeorgiaUSA
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGeorgiaUSA
| | - Tom E. Clemente
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Gary Stacey
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | | | | | | | - Ivan Baxter
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | | | | | - Steven B. Cannon
- USDA‐ARS Corn Insects and Crop Genetics Research UnitAmesIowaUSA
| | - Steven J. Clough
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Brian W. Diers
- Department of Crop SciencesUniversity of IllinoisUrbanaIllinoisUSA
| | - Anne E. Dorrance
- Department of Plant PathologyThe Ohio State UniversityWoosterOhioUSA
| | | | - George L. Graef
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - C. Nathan Hancock
- Department of Biological, Environmental, and Earth SciencesUniversity of South Carolina AikenAikenSouth CarolinaUSA
| | - Karen A. Hudson
- USDA‐ARS Crop Production and Pest Control Research UnitWest LafayetteIndianaUSA
| | - David L. Hyten
- Department of Agronomy & HorticultureUniversity of NebraskaLincolnNebraskaUSA
| | - Aardra Kachroo
- Department of Plant PathologyUniversity of KentuckyLexingtonKentuckyUSA
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental SciencesAuburn UniversityAuburnAlabamaUSA
| | - Marc Libault
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Aaron J. Lorenz
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSt. PaulMinnesotaUSA
| | - Adam L. Mahan
- USDA‐ARS Soybean/Maize Germplasm, Pathology and Genetics Research UnitUrbanaIllinoisUSA
| | | | - Michaela McGinn
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural SystemsSouthern Illinois UniversityCarbondaleIllinoisUSA
| | - Jack K. Okamuro
- USDA‐ARS Crop Production and ProtectionBeltsvilleMarylandUSA
| | - Kerry F. Pedley
- USDA‐ARS Foreign Disease‐Weed Science Research UnitFt. DetrickMarylandUSA
| | | | - Andrew M. Scaboo
- Division of Plant Science and TechnologyUniversity of MissouriColumbiaMissouriUSA
| | - Jeremy Schmutz
- DOE Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCaliforniaUSA
- HudsonAlpha Institute of BiotechnologyHuntsvilleAlabamaUSA
| | - Bao‐Hua Song
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | | | | | | | - Dechun Wang
- Department of Plant, Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Lisa Weaver
- Smithbucklin for the United Soybean BoardSt. LouisMissouriUSA
| | - Bo Zhang
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | | | | |
Collapse
|
3
|
Jones SE, Ayanlade TT, Fallen B, Jubery TZ, Singh A, Ganapathysubramanian B, Sarkar S, Singh AK. Multi-sensor and multi-temporal high-throughput phenotyping for monitoring and early detection of water-limiting stress in soybean. PLANT PHENOME JOURNAL 2024; 7:e70009. [PMID: 39758248 PMCID: PMC11698365 DOI: 10.1002/ppj2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/10/2024] [Indexed: 01/07/2025]
Abstract
Soybean (Glycine max [L.] Merr.) production is susceptible to biotic and abiotic stresses, exacerbated by extreme weather events. Water limiting stress, that is, drought, emerges as a significant risk for soybean production, underscoring the need for advancements in stress monitoring for crop breeding and production. This project combined multi-modal information to identify the most effective and efficient automated methods to study drought response. We investigated a set of diverse soybean accessions using multiple sensors in a time series high-throughput phenotyping manner to: (1) develop a pipeline for rapid classification of soybean drought stress symptoms, and (2) investigate methods for early detection of drought stress. We utilized high-throughput time-series phenotyping using unmanned aerial vehicles and sensors in conjunction with machine learning analytics, which offered a swift and efficient means of phenotyping. The visible bands were most effective in classifying the severity of canopy wilting stress after symptom emergence. Non-visual bands in the near-infrared region and short-wave infrared region contribute to the differentiation of susceptible and tolerant soybean accessions prior to visual symptom development. We report pre-visual detection of soybean wilting using a combination of different vegetation indices and spectral bands, especially in the red-edge. These results can contribute to early stress detection methodologies and rapid classification of drought responses for breeding and production applications.
Collapse
Affiliation(s)
| | | | - Benjamin Fallen
- USDA‐ARS Soybean and Nitrogen Fixation Research UnitRaleighNorth CarolinaUSA
| | | | - Arti Singh
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | | | - Soumik Sarkar
- Department of Mechanical EngineeringIowa State UniversityAmesIowaUSA
| | | |
Collapse
|
4
|
Chamarthi SK, Purcell LC, Fritschi FB, Ray JD, Smith JR, Kaler AS, King CA, Gillman JD. Association mapping for water use efficiency in soybean identifies previously reported and novel loci and permits genomic prediction. FRONTIERS IN PLANT SCIENCE 2024; 15:1486736. [PMID: 39670270 PMCID: PMC11634610 DOI: 10.3389/fpls.2024.1486736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/04/2024] [Indexed: 12/14/2024]
Abstract
Soybean is a major legume crop cultivated globally due to the high quality and quantity of its seed protein and oil. However, drought stress is the most significant factor that decreases soybean yield, and more than 90% of US soybean acreage is dependent on rainfall. Water use efficiency (WUE) is positively correlated with the carbon isotopic ratio 13C/12C (C13 ratio) and selecting soybean varieties for high C13 ratio may enhance WUE and help improve tolerance to drought. Our study objective was to identify genetic loci associated with C13 ratio using a diverse set of 205 soybean maturity group IV accessions, and to examine the genomic prediction accuracy of C13 ratio across a range of environments. An accession panel was grown and assessed across seven distinct combinations of site, year and treatment, with five site-years under irrigation and two site-years under drought stress. Genome-wide association mapping (GWAM) analysis identified 103 significant single nucleotide polymorphisms (SNPs) representing 93 loci associated with alterations to C13 ratio. Out of these 93 loci, 62 loci coincided with previous studies, and 31 were novel. Regions tagged by 96 significant SNPs overlapped with 550 candidate genes involved in plant stress responses. These confirmed genomic loci could serve as a valuable resource for marker-assisted selection to enhance WUE and drought tolerance in soybean. This study also demonstrated that genomic prediction can accurately predict C13 ratio across different genotypes and environments and by examining only significant SNPs identified by GWAM analysis, higher prediction accuracies (P ≤ 0.05; 0.51 ≤ r ≤ 0.65) were observed. We generated genomic estimated breeding values for each genotype in the entire USDA-GRIN germplasm collection for which there was marker data. This information was used to identify the top ten extreme genotypes for each soybean maturity group, which could serve as valuable genetic and physiological resources for future breeding and physiological studies.
Collapse
Affiliation(s)
- Siva K. Chamarthi
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Larry C. Purcell
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Felix B. Fritschi
- Division of Plant Science & Technology, University of Missouri, Columbia, MO, United States
| | - Jeffery D. Ray
- Crop Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), Stoneville, MS, United States
| | - James R. Smith
- Crop Genetics Research Unit, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), Stoneville, MS, United States
| | - Avjinder S. Kaler
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - C. Andy King
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Jason D. Gillman
- Plant Genetic Research Unit, United States Department of Agriculture – Agricultural Research Service (USDA-ARS), University of Missouri, Columbia, MO, United States
| |
Collapse
|
5
|
Nguyen TC, Tran HA, Lee JD, Seo HS, Jo H, Song JT. Genetic Control of Tolerance to Drought Stress in Wild Soybean ( Glycine soja) at the Vegetative and the Germination Stages. PLANTS (BASEL, SWITZERLAND) 2024; 13:1894. [PMID: 39065421 PMCID: PMC11281237 DOI: 10.3390/plants13141894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024]
Abstract
Drought stress, which is becoming more prevalent due to climate change, is a significant abiotic factor that adversely impacts crop production and yield stability. Cultivated soybean (Glycine max), a versatile crop for humans and animals, exhibits sensitivity to drought, resulting in reduced growth and development under drought conditions. However, few genetic studies have assessed wild soybean's (Glycine soja) response to drought stress. In this work, we conducted a genome-wide association study (GWAS) and analysis of wild soybean accessions to identify loci responsible for drought tolerance at the vegetative (n = 187) and the germination stages (n = 135) using the available resequencing data. The GWAS analysis of the leaf wilting score (LWS) identified eight single-nucleotide polymorphisms (SNPs) on chromosomes 10, 11, and 19. Of these, wild soybeans with both SNPs on chromosomes 10 (adenine) and 11 (thymine) produced lower LWS, indicating that these SNPs have an important role in the genetic effect on LWS for drought tolerance at the vegetative stage. At the germination stage, nine SNPs associated with five phenotypic measurements were identified on chromosomes 6, 9, 10, 13, 16, and 17, and the genomic regions identified at the germination stage were different from those identified for the LWS, supporting our previous finding that there may not be a robust correlation between the genes influencing phenotypes at the germination and vegetative stages. This research will benefit marker-assisted breeding programs aimed at enhancing drought tolerance in soybeans.
Collapse
Affiliation(s)
- Thi Cuc Nguyen
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Hai Anh Tran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Jeong-Dong Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyun Jo
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; (T.C.N.); (H.A.T.); (J.-D.L.)
| |
Collapse
|
6
|
Ayala J, Vasquez A, Balakrishnan D, Madrigal E, George J, Kariyat R. Effects of fast and slow-wilting soybean genotypes on fall armyworm ( Spodoptera frugiperda) growth and development. Commun Integr Biol 2024; 17:2354421. [PMID: 38778870 PMCID: PMC11110702 DOI: 10.1080/19420889.2024.2354421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Soybean (Glycine max) is the most important plant protein source, and Fall Armyworm (FAW, Spodoptera frugiperda) is considered a major pest. This study aimed to examine the impact of FAW feeding on soybean accessions that vary in their water use efficiency (WUE) traits, by examining FAW growth and life history parameters along with plant growth response to pest damage. Soybean accessions were grown in a greenhouse and exposed to FAW larval feeding for 48 h at three different soybean growth stages: V3, R3, and R6. The growth and development of the FAW and soybeans were monitored. Results showed that faster wilting soybean accessions grow taller and have more leaves than slower wilting accessions, but yield was higher in slower wilting soybean accessions. FAW experienced the highest mortality on mid-stage (R3) soybean plants, but they gained the least mass on early stage (V3) soybean plants. These results can assist in better understanding plant insect-interactions at different life stages in both soybean and FAW with implications for management.
Collapse
Affiliation(s)
- Jessica Ayala
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Alejandro Vasquez
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Devi Balakrishnan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| | - Evelyn Madrigal
- School of Integrative Biological and Chemical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS, USA
| | - Rupesh Kariyat
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
7
|
Patel J, Allen TW, Buckley B, Chen P, Clubb M, Mozzoni LA, Orazaly M, Florez L, Moseley D, Rupe JC, Shrestha BK, Price PP, Ward BM, Koebernick J. Deciphering genetic factors contributing to enhanced resistance against Cercospora leaf blight in soybean ( Glycine max L.) using GWAS analysis. Front Genet 2024; 15:1377223. [PMID: 38798696 PMCID: PMC11116733 DOI: 10.3389/fgene.2024.1377223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
Cercospora leaf blight (CLB), caused by Cercospora cf. flagellaris, C. kikuchii, and C. cf. sigesbeckiae, is a significant soybean [Glycine max (L.) Merr.] disease in regions with hot and humid conditions causing yield loss in the United States and Canada. There is limited information regarding resistant soybean cultivars, and there have been marginal efforts to identify the genomic regions underlying resistance to CLB. A Genome-Wide Association Study was conducted using a diverse panel of 460 soybean accessions from maturity groups III to VII to identify the genomic regions associated to the CLB disease. These accessions were evaluated for CLB in different regions of the southeastern United States over 3 years. In total, the study identified 99 Single Nucleotide Polymorphism (SNPs) associated with the disease severity and 85 SNPs associated with disease incidence. Across multiple environments, 47 disease severity SNPs and 23 incidence SNPs were common. Candidate genes within 10 kb of these SNPs were involved in biotic and abiotic stress pathways. This information will contribute to the development of resistant soybean germplasm. Further research is warranted to study the effect of pyramiding desirable genomic regions and investigate the role of identified genes in soybean CLB resistance.
Collapse
Affiliation(s)
- Jinesh Patel
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Tom W. Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS, United States
| | - Blair Buckley
- LSU AgCenter, Red River Research Station, Bossier City, LA, United States
| | - Pengyin Chen
- Fisher Delta Research Center, MO University of Missouri, Portageville, MO, United States
| | - Michael Clubb
- Fisher Delta Research Center, MO University of Missouri, Portageville, MO, United States
| | - Leandro A. Mozzoni
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - Moldir Orazaly
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - Liliana Florez
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - David Moseley
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR, United States
| | - John C. Rupe
- Department of Plant Pathology, University of Arkansas, Fayetteville, AR, United States
| | - Bishnu K. Shrestha
- LSU AgCenter, Macon Ridge Research Station, Winnsboro, LA, United States
| | - Paul P. Price
- LSU AgCenter, Macon Ridge Research Station, Winnsboro, LA, United States
| | - Brian M. Ward
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA, United States
| | - Jenny Koebernick
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
8
|
Menke E, Steketee CJ, Song Q, Schapaugh WT, Carter TE, Fallen B, Li Z. Genetic mapping reveals the complex genetic architecture controlling slow canopy wilting in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:107. [PMID: 38632129 PMCID: PMC11024021 DOI: 10.1007/s00122-024-04609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/23/2024] [Indexed: 04/19/2024]
Abstract
In soybean [Glycine max (L.) Merr.], drought stress is the leading cause of yield loss from abiotic stress in rain-fed US growing areas. Only 10% of the US soybean production is irrigated; therefore, plants must possess physiological mechanisms to tolerate drought stress. Slow canopy wilting is a physiological trait that is observed in a few exotic plant introductions (PIs) and may lead to yield improvement under drought stress. Canopy wilting of 130 recombinant inbred lines (RILs) derived from Hutcheson × PI 471938 grown under drought stress was visually evaluated and genotyped with the SoySNP6K BeadChip. Over four years, field evaluations of canopy wilting were conducted under rainfed conditions at three locations across the US (Georgia, Kansas, and North Carolina). Due to the variation in weather among locations and years, the phenotypic data were collected from seven environments. Substantial variation in canopy wilting was observed among the genotypes in the RIL population across environments. Three QTLs were identified for canopy wilting from the RIL population using composite interval mapping on chromosomes (Chrs) 2, 8, and 9 based on combined environmental analyses. These QTLs inherited the favorable alleles from PI 471938 and accounted for 11, 10, and 14% of phenotypic variation, respectively. A list of 106 candidate genes were narrowed down for these three QTLs based on the published information. The QTLs identified through this research can be used as targets for further investigation to understand the mechanisms of slow canopy wilting. These QTLs could be deployed to improve drought tolerance through a targeted selection of the genomic regions from PI 471938.
Collapse
Affiliation(s)
- Ethan Menke
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Clinton J Steketee
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, USA
| | | | - Thomas E Carter
- Department of Crop and Soil Sciences, North Carolina State University and USDA-ARS, Raleigh, NC, USA
| | - Benjamin Fallen
- Department of Crop and Soil Sciences, North Carolina State University and USDA-ARS, Raleigh, NC, USA
| | - Zenglu Li
- Institute of Plant Breeding, Genetics, and Genomics, and Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Bakala HS, Devi J, Singh G, Singh I. Drought and heat stress: insights into tolerance mechanisms and breeding strategies for pigeonpea improvement. PLANTA 2024; 259:123. [PMID: 38622376 DOI: 10.1007/s00425-024-04401-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024]
Abstract
MAIN CONCLUSION Pigeonpea has potential to foster sustainable agriculture and resilience in evolving climate change; understanding bio-physiological and molecular mechanisms of heat and drought stress tolerance is imperative to developing resilience cultivars. Pigeonpea is an important legume crop that has potential resilience in the face of evolving climate scenarios. However, compared to other legumes, there has been limited research on abiotic stress tolerance in pigeonpea, particularly towards drought stress (DS) and heat stress (HS). To address this gap, this review delves into the genetic, physiological, and molecular mechanisms that govern pigeonpea's response to DS and HS. It emphasizes the need to understand how this crop combats these stresses and exhibits different types of tolerance and adaptation mechanisms through component traits. The current article provides a comprehensive overview of the complex interplay of factors contributing to the resilience of pigeonpea under adverse environmental conditions. Furthermore, the review synthesizes information on major breeding techniques, encompassing both conventional methods and modern molecular omics-assisted tools and techniques. It highlights the potential of genomics and phenomics tools and their pivotal role in enhancing adaptability and resilience in pigeonpea. Despite the progress made in genomics, phenomics and big data analytics, the complexity of drought and heat tolerance in pigeonpea necessitate continuous exploration at multi-omic levels. High-throughput phenotyping (HTP) is crucial for gaining insights into perplexed interactions among genotype, environment, and management practices (GxExM). Thus, integration of advanced technologies in breeding programs is critical for developing pigeonpea varieties that can withstand the challenges posed by climate change. This review is expected to serve as a valuable resource for researchers, providing a deeper understanding of the mechanisms underlying abiotic stress tolerance in pigeonpea and offering insights into modern breeding strategies that can contribute to the development of resilient varieties suited for changing environmental conditions.
Collapse
Affiliation(s)
- Harmeet Singh Bakala
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jomika Devi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurjeet Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
- Texas A&M University, AgriLife Research Center, Beaumont, TX, 77713, USA.
| | - Inderjit Singh
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| |
Collapse
|
10
|
Patel S, Patel J, Bowen K, Koebernick J. Deciphering the genetic architecture of resistance to Corynespora cassiicola in soybean ( Glycine max L.) by integrating genome-wide association mapping and RNA-Seq analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1255763. [PMID: 37828935 PMCID: PMC10565807 DOI: 10.3389/fpls.2023.1255763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
Target spot caused by Corynespora cassiicola is a problematic disease in tropical and subtropical soybean (Glycine max) growing regions. Although resistant soybean genotypes have been identified, the genetic mechanisms underlying target spot resistance has not yet been studied. To address this knowledge gap, this is the first genome-wide association study (GWAS) conducted using the SoySNP50K array on a panel of 246 soybean accessions, aiming to unravel the genetic architecture of resistance. The results revealed significant associations of 14 and 33 loci with resistance to LIM01 and SSTA C. cassiicola isolates, respectively, with six loci demonstrating consistent associations across both isolates. To identify potential candidate genes within GWAS-identified loci, dynamic transcriptome profiling was conducted through RNA-Seq analysis. The analysis involved comparing gene expression patterns between resistant and susceptible genotypes, utilizing leaf tissue collected at different time points after inoculation. Integrating results of GWAS and RNA-Seq analyses identified 238 differentially expressed genes within a 200 kb region encompassing significant quantitative trait loci (QTLs) for disease severity ratings. These genes were involved in defense response to pathogen, innate immune response, chitinase activity, histone H3-K9 methylation, salicylic acid mediated signaling pathway, kinase activity, and biosynthesis of flavonoid, jasmonic acid, phenylpropanoid, and wax. In addition, when combining results from this study with previous GWAS research, 11 colocalized regions associated with disease resistance were identified for biotic and abiotic stress. This finding provides valuable insight into the genetic resources that can be harnessed for future breeding programs aiming to enhance soybean resistance against target spot and other diseases simultaneously.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Jinesh Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Kira Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
11
|
Fleitas AL, Castro A, Blumwald E, Vidal S. Functional specialization of chloroplast vesiculation ( CV) duplicated genes from soybean shows partial overlapping roles during stress-induced or natural senescence. FRONTIERS IN PLANT SCIENCE 2023; 14:1184020. [PMID: 37346131 PMCID: PMC10280078 DOI: 10.3389/fpls.2023.1184020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
Soybean is a globally important legume crop which is highly sensitive to drought. The identification of genes of particular relevance for drought responses provides an important basis to improve tolerance to environmental stress. Chloroplast Vesiculation (CV) genes have been characterized in Arabidopsis and rice as proteins participating in a specific chloroplast-degradation vesicular pathway (CVV) during natural or stress-induced leaf senescence. Soybean genome contains two paralogous genes encoding highly similar CV proteins, CV1 and CV2. In this study, we found that expression of CV1 was differentially upregulated by drought stress in soybean contrasting genotypes exhibiting slow-wilting (tolerant) or fast-wilting (sensitive) phenotypes. CV1 reached higher induction levels in fast-wilting plants, suggesting a negative correlation between CV1 gene expression and drought tolerance. In contrast, autophagy (ATG8) and ATI-PS (ATI1) genes were induced to higher levels in slow-wilting plants, supporting a pro-survival role for these genes in soybean drought tolerance responses. The biological function of soybean CVs in chloroplast degradation was confirmed by analyzing the effect of conditional overexpression of CV2-FLAG fusions on the accumulation of specific chloroplast proteins. Functional specificity of CV1 and CV2 genes was assessed by analyzing their specific promoter activities in transgenic Arabidopsis expressing GUS reporter gene driven by CV1 or CV2 promoters. CV1 promoter responded primarily to abiotic stimuli (hyperosmolarity, salinity and oxidative stress), while the promoter of CV2 was predominantly active during natural senescence. Both promoters were highly responsive to auxin but only CV1 responded to other stress-related hormones, such as ABA, salicylic acid and methyl jasmonate. Moreover, the dark-induced expression of CV2, but not of CV1, was strongly inhibited by cytokinin, indicating similarities in the regulation of CV2 to the reported expression of Arabidopsis and rice CV genes. Finally, we report the expression of both CV1 and CV2 genes in roots of soybean and transgenic Arabidopsis, suggesting a role for the encoded proteins in root plastids. Together, the results indicate differential roles for CV1 and CV2 in development and in responses to environmental stress, and point to CV1 as a potential target for gene editing to improve crop performance under stress without compromising natural development.
Collapse
Affiliation(s)
- Andrea Luciana Fleitas
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Alexandra Castro
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Sabina Vidal
- Laboratorio de Biología Molecular Vegetal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
12
|
Chamarthi SK, Kaler AS, Abdel-Haleem H, Fritschi FB, Gillman JD, Ray JD, Smith JR, Purcell LC. Identification of genomic regions associated with the plasticity of carbon 13 ratio in soybean. THE PLANT GENOME 2023; 16:e20284. [PMID: 36411598 DOI: 10.1002/tpg2.20284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/08/2022] [Indexed: 05/10/2023]
Abstract
Improving water use efficiency (WUE) for soybean [Glycine max (L.) Merr.] through selection for high carbon isotope (C13) ratio may increase drought tolerance, but increased WUE may limit growth in productive environments. An ideal genotype would be plastic for C13 ratio; that is, be able to alter C13 ratio in response to the environment. Our objective was to identify genomic regions associated with C13 ratio plasticity, C13 ratio stability, and overall C13 ratio in two panels of diverse Maturity Group IV soybean accessions. A second objective was to identify accessions that differed in their C13 ratio plasticity. Panel 1 (205 accessions) was evaluated in seven irrigated and four drought environments, and Panel 2 (373 accessions) was evaluated in four environments. Plasticity was quantified as the slope from regressing C13 ratio of individual genotypes against an environmental index calculated based on the mean within and across environments. The regression intercept was considered a measure of C13 ratio over all environments, and the root mean square error was considered a measure of stability. Combined over both panels, genome-wide association mapping (GWAM) identified 19 single nucleotide polymorphisms (SNPs) for plasticity, 39 SNPs for C13 ratio, and 16 SNPs for stability. Among these SNPs, 71 candidate genes had annotations associated with transpiration or water conservation and transport, root development, root hair elongation, and stomatal complex morphogenesis. The genomic regions associated with plasticity and stability identified in the current study will be a useful resource for implementing genomic selection for improving drought tolerance in soybean.
Collapse
Affiliation(s)
- Siva K Chamarthi
- Dep. of Crop, Soil, and Environmental Sciences, Univ. of Arkansas, Fayetteville, AR, USA
| | - Avjinder S Kaler
- Dep. of Crop, Soil, and Environmental Sciences, Univ. of Arkansas, Fayetteville, AR, USA
| | - Hussein Abdel-Haleem
- USDA-ARS, United States Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Felix B Fritschi
- Division of Plant Science & Technology, Univ. of Missouri, Columbia, MO, USA
| | - Jason D Gillman
- USDA-ARS, Plant Genetic Research Unit, Univ. of Missouri, Columbia, MO, USA
| | - Jeffery D Ray
- USDA-ARS, Crop Genetics Research Unit, Stoneville, MS, USA
| | - James R Smith
- USDA-ARS, Crop Genetics Research Unit, Stoneville, MS, USA
| | - Larry C Purcell
- Dep. of Crop, Soil, and Environmental Sciences, Univ. of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
13
|
Saleem A, Roldán-Ruiz I, Aper J, Muylle H. Genetic control of tolerance to drought stress in soybean. BMC PLANT BIOLOGY 2022; 22:615. [PMID: 36575367 PMCID: PMC9795773 DOI: 10.1186/s12870-022-03996-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Drought stress limits the production of soybean [Glycine max (L.) Merr.], which is the most grown high-value legume crop worldwide. Breeding for drought tolerance is a difficult endeavor and understanding the genetic basis of drought tolerance in soybean is therefore crucial for harnessing the genomic regions involved in the tolerance mechanisms. A genome-wide association study (GWAS) analysis was applied in a soybean germplasm collection (the EUCLEG collection) of 359 accessions relevant for breeding in Europe, to identify genomic regions and candidate genes involved in the response to short duration and long duration drought stress (SDS and LDS respectively) in soybean. RESULTS The phenotypic response to drought was stronger in the long duration drought (LDS) than in the short duration drought (SDS) experiment. Over the four traits considered (canopy wilting, leaf senescence, maximum absolute growth rate and maximum plant height) the variation was in the range of 8.4-25.2% in the SDS, and 14.7-29.7% in the LDS experiments. The GWAS analysis identified a total of 17 and 22 significant marker-trait associations for four traits in the SDS and LDS experiments, respectively. In the genomic regions delimited by these markers we identified a total of 12 and 16 genes with putative functions that are of particular relevance for drought stress responses including stomatal movement, root formation, photosynthesis, ABA signaling, cellular protection and cellular repair mechanisms. Some of these genomic regions co-localized with previously known QTLs for drought tolerance traits including water use efficiency, chlorophyll content and photosynthesis. CONCLUSION Our results indicate that the mechanism of slow wilting in the SDS might be associated with the characteristics of the root system, whereas in the LDS, slow wilting could be due to low stomatal conductance and transpiration rates enabling a high WUE. Drought-induced leaf senescence was found to be associated to ABA and ROS responses. The QTLs related to WUE contributed to growth rate and canopy height maintenance under drought stress. Co-localization of several previously known QTLs for multiple agronomic traits with the SNPs identified in this study, highlights the importance of the identified genomic regions for the improvement of agronomic performance in addition to drought tolerance in the EUCLEG collection.
Collapse
Affiliation(s)
- Aamir Saleem
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Jonas Aper
- Protealis, Technologiepark-Zwijnaarde, Ghent, Belgium
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Plant Sciences Unit, Caritasstraat 39, 9090, Melle, Belgium.
| |
Collapse
|
14
|
Sharmin RA, Karikari B, Chang F, Al Amin GM, Bhuiyan MR, Hina A, Lv W, Chunting Z, Begum N, Zhao T. Genome-wide association study uncovers major genetic loci associated with seed flooding tolerance in soybean. BMC PLANT BIOLOGY 2021; 21:497. [PMID: 34715792 PMCID: PMC8555181 DOI: 10.1186/s12870-021-03268-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/29/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Seed flooding stress is one of the threatening environmental stressors that adversely limits soybean at the germination stage across the globe. The knowledge on the genetic basis underlying seed-flooding tolerance is limited. Therefore, we performed a genome-wide association study (GWAS) using 34,718 single nucleotide polymorphism (SNPs) in a panel of 243 worldwide soybean collections to identify genetic loci linked to soybean seed flooding tolerance at the germination stage. RESULTS In the present study, GWAS was performed with two contrasting models, Mixed Linear Model (MLM) and Multi-Locus Random-SNP-Effect Mixed Linear Model (mrMLM) to identify significant SNPs associated with electrical conductivity (EC), germination rate (GR), shoot length (ShL), and root length (RL) traits at germination stage in soybean. With MLM, a total of 20, 40, 4, and 9 SNPs associated with EC, GR, ShL and RL, respectively, whereas in the same order mrMLM detected 27, 17, 13, and 18 SNPs. Among these SNPs, two major SNPs, Gm_08_11971416, and Gm_08_46239716 were found to be consistently connected with seed-flooding tolerance related traits, namely EC and GR across two environments. We also detected two SNPs, Gm_05_1000479 and Gm_01_53535790 linked to ShL and RL, respectively. Based on Gene Ontology enrichment analysis, gene functional annotations, and protein-protein interaction network analysis, we predicted eight candidate genes and three hub genes within the regions of the four SNPs with Cis-elements in promoter regions which may be involved in seed-flooding tolerance in soybeans and these warrant further screening and functional validation. CONCLUSIONS Our findings demonstrate that GWAS based on high-density SNP markers is an efficient approach to dissect the genetic basis of complex traits and identify candidate genes in soybean. The trait associated SNPs could be used for genetic improvement in soybean breeding programs. The candidate genes could help researchers better understand the molecular mechanisms underlying seed-flooding stress tolerance in soybean.
Collapse
Affiliation(s)
- Ripa Akter Sharmin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jagannath University, Dhaka, 1100, Bangladesh
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Fangguo Chang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - G M Al Amin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mashiur Rahman Bhuiyan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhuan Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhang Chunting
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|