1
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. The Janus Face of Oxidative Stress and Hydrogen Sulfide: Insights into Neurodegenerative Disease Pathogenesis. Antioxidants (Basel) 2025; 14:360. [PMID: 40227410 PMCID: PMC11939184 DOI: 10.3390/antiox14030360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/09/2025] [Accepted: 03/17/2025] [Indexed: 04/15/2025] Open
Abstract
Oxidative stress plays an essential role in neurodegenerative pathophysiology, acting as both a critical signaling mediator and a driver of neuronal damage. Hydrogen sulfide (H2S), a versatile gasotransmitter, exhibits a similarly "Janus-faced" nature, acting as a potent antioxidant and cytoprotective molecule at physiological concentrations, but becoming detrimental when dysregulated. This review explores the dual roles of oxidative stress and H2S in normal cellular physiology and pathophysiology, focusing on neurodegenerative disease progression. We highlight potential therapeutic opportunities for targeting redox and sulfur-based signaling systems in neurodegenerative diseases by elucidating the intricate balance between these opposing forces.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
2
|
Ahmad W, Tipu MY, Khan MUR, Akbar H, Anjum AA, Omer MO. Molecular Characterization, Oxidative Stress-Mediated Genotoxicity, and Hemato-Biochemical Changes in Domestic Water Buffaloes Naturally Infected with Trypanosoma evansi Under Field Conditions. Pathogens 2025; 14:66. [PMID: 39861027 PMCID: PMC11768309 DOI: 10.3390/pathogens14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 01/10/2025] [Indexed: 01/27/2025] Open
Abstract
(1) Background: Surra is a debilitating disease of wild and domestic animals caused by Trypanosoma evansi (T. evansi), resulting in significant mortality and production losses in the affected animals. This study is the first to assess the genetic relationships of T. evansi in naturally affected buffaloes from Multan district, Pakistan, using ITS-1 primers and evaluating the effects of parasitemia and oxidative stress on DNA damage and hematobiochemical changes in infected buffaloes. (2) Methods: Blood samples were collected from 167 buffaloes using a multi-stage cluster sampling strategy, and trypomastigote identification was performed through microscopy and PCR targeting RoTat 1.2 and ITS-1 primers. Molecular characterization involved ITS-1 via neighbor-joining analysis. The impact of parasitemia loads was correlated with oxidative stress markers, genotoxicity, and hematobiochemical parameters using Pearson correlation and multivariable regression models. (3) Results: Field-stained thin blood film microscopy and molecular identification revealed 8.98% and 10.18% infection rates, respectively. Phylogenetic analysis based on ITS-1 region sequences of the identified isolates showed close genetic associations with Indian isolates. The mean trypomastigote count observed in the infected buffaloes was 5.15 × 106 (±5.3 × 102)/µL of blood. The parasitemia loads were significantly correlated with the alterations in oxidative stress markers, DNA damage, and changes in hematobiochemical parameters. Infected animals exhibited significant (p < 0.05) alterations in oxidative stress biomarkers, including catalase, nitric oxide, and malondialdehyde concentrations. Noteworthily, a comet assay revealed a significantly (p < 0.0001) higher mean genetic damage index in the infected buffaloes (0.7 ± 0.04) compared with the healthy ones (0.196 ± 0.004). Alongside significant (p < 0.05) reductions in red cell indices, a marked elevation in leukocyte counts and serum hepatic enzyme levels was recorded in the affected buffaloes. (4) Conclusion: T. evansi isolates of buffaloes from Multan, Pakistan, have genetic similarities to Indian isolates. This study also revealed that higher parasitemia loads induce genotoxicity in the infected animals through oxidative stress and cause hematobiochemical alterations under natural field conditions.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (W.A.)
- Livestock and Dairy Development Department, Government of Punjab, Lahore 54000, Pakistan
| | - Muhammad Yasin Tipu
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (W.A.)
| | - Muti ur Rehman Khan
- Department of Pathology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan; (W.A.)
| | - Haroon Akbar
- Department of Parasitology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Aftab Ahmad Anjum
- Institute of Microbiology, Faculty of Veterinary Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Ovais Omer
- Department of Pharmacology and Toxicology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Zaid A, Ariel A. Harnessing anti-inflammatory pathways and macrophage nano delivery to treat inflammatory and fibrotic disorders. Adv Drug Deliv Rev 2024; 207:115204. [PMID: 38342241 DOI: 10.1016/j.addr.2024.115204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Targeting specific organs and cell types using nanotechnology and sophisticated delivery methods has been at the forefront of applicative biomedical sciences lately. Macrophages are an appealing target for immunomodulation by nanodelivery as they are heavily involved in various aspects of many diseases and are highly plastic in their nature. Their continuum of functional "polarization" states has been a research focus for many years yielding a profound understanding of various aspects of these cells. The ability of monocyte-derived macrophages to metamorphose from pro-inflammatory to reparative and consequently to pro-resolving effectors has raised significant interest in its therapeutic potential. Here, we briefly survey macrophages' ontogeny and various polarization phenotypes, highlighting their function in the inflammation-resolution shift. We review their inducing mediators, signaling pathways, and biological programs with emphasis on the nucleic acid sensing-IFN-I axis. We also portray the polarization spectrum of macrophages and the characteristics of their transition between different subtypes. Finally, we highlighted different current drug delivery methods for targeting macrophages with emphasis on nanotargeting that might lead to breakthroughs in the treatment of wound healing, bone regeneration, autoimmune, and fibrotic diseases.
Collapse
Affiliation(s)
- Ahmad Zaid
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel
| | - Amiram Ariel
- Department of Biology and Human Biology, University of Haifa, Haifa, 3498838 Israel.
| |
Collapse
|
4
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Guo X, Huang D, Jing G, Feng J, Zhu S. Nitric oxide-mediated DNA methylation enhances cold resistance in postharvest peach fruit. Food Chem 2023; 404:134660. [DOI: 10.1016/j.foodchem.2022.134660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/17/2022] [Accepted: 10/15/2022] [Indexed: 11/22/2022]
|
6
|
Gupta K, Mathew AB, Chakrapani H, Saini DK. H 2S contributed from CSE during cellular senescence suppresses inflammation and nitrosative stress. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119388. [PMID: 36372112 DOI: 10.1016/j.bbamcr.2022.119388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 10/17/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.
Collapse
Affiliation(s)
- Kavya Gupta
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Diabetes Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Abraham Binoy Mathew
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Deepak Kumar Saini
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India; Center for BioSystems Science and Engineering, Indian Institute of Science, C.V Raman Avenue, Bangalore 560012, India.
| |
Collapse
|
7
|
Martí-Guillén JM, Pardo-Hernández M, Martínez-Lorente SE, Almagro L, Rivero RM. Redox post-translational modifications and their interplay in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027730. [PMID: 36388514 PMCID: PMC9644032 DOI: 10.3389/fpls.2022.1027730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 05/27/2023]
Abstract
The impact of climate change entails a progressive and inexorable modification of the Earth's climate and events such as salinity, drought, extreme temperatures, high luminous intensity and ultraviolet radiation tend to be more numerous and prolonged in time. Plants face their exposure to these abiotic stresses or their combination through multiple physiological, metabolic and molecular mechanisms, to achieve the long-awaited acclimatization to these extreme conditions, and to thereby increase their survival rate. In recent decades, the increase in the intensity and duration of these climatological events have intensified research into the mechanisms behind plant tolerance to them, with great advances in this field. Among these mechanisms, the overproduction of molecular reactive species stands out, mainly reactive oxygen, nitrogen and sulfur species. These molecules have a dual activity, as they participate in signaling processes under physiological conditions, but, under stress conditions, their production increases, interacting with each other and modifying and-or damaging the main cellular components: lipids, carbohydrates, nucleic acids and proteins. The latter have amino acids in their sequence that are susceptible to post-translational modifications, both reversible and irreversible, through the different reactive species generated by abiotic stresses (redox-based PTMs). Some research suggests that this process does not occur randomly, but that the modification of critical residues in enzymes modulates their biological activity, being able to enhance or inhibit complete metabolic pathways in the process of acclimatization and tolerance to the exposure to the different abiotic stresses. Given the importance of these PTMs-based regulation mechanisms in the acclimatization processes of plants, the present review gathers the knowledge generated in recent years on this subject, delving into the PTMs of the redox-regulated enzymes of plant metabolism, and those that participate in the main stress-related pathways, such as oxidative metabolism, primary metabolism, cell signaling events, and photosynthetic metabolism. The aim is to unify the existing information thus far obtained to shed light on possible fields of future research in the search for the resilience of plants to climate change.
Collapse
Affiliation(s)
- José M. Martí-Guillén
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Miriam Pardo-Hernández
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Sara E. Martínez-Lorente
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Rosa M. Rivero
- Department of Plant Nutrition, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Murcia, Spain
| |
Collapse
|
8
|
Wang Y, Zhao X, Chen Y, James TD, Wang G, Zhang H. Synergistically activated dual-locked fluorescent probes to monitor H 2S-induced DNA damage. Chem Commun (Camb) 2022; 58:10500-10503. [PMID: 36043365 DOI: 10.1039/d2cc04247a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalimide-based fluorescent probes (NAN0-N3 and NAN6-N3) were developed with dual locked fluorescence. Here, ≥1.9 × 10-2 mM of H2S and ≥2.2 × 10-2 μg mL-1 of DNA could unlock a highly sensitive off-on fluorescence response through synergistic changes of the molecular structure and conformation. As such, the probes could monitor DNA damage induced by the overexpression of H2S, and were able to evaluate the degree of apoptosis of living cells mediated by H2S-induced mtDNA or nDNA damage.
Collapse
Affiliation(s)
- Yafu Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Xiaoli Zhao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Yuehua Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering Institution, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|