1
|
Wang Q, Wang J, Huang Z, Li Y, Li H, Huang P, Cai Y, Wang J, Liu X, Lin FC, Lu J. The endosomal-vacuolar transport system acts as a docking platform for the Pmk1 MAP kinase signaling pathway in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2025; 245:722-747. [PMID: 39494465 DOI: 10.1111/nph.20235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
In Magnaporthe oryzae, the Pmk1 MAP kinase signaling pathway regulates appressorium formation, plant penetration, effector secretion, and invasive growth. While the Mst11-Mst7-Pmk1 cascade was characterized two decades ago, knowledge of its signaling in the intracellular network remains limited. In this study, we demonstrate that the endosomal surface scaffolds Pmk1 MAPK signaling and Msb2 activates Ras2 on endosomes in M. oryzae. Protein colocalization demonstrated that Msb2, Ras2, Cap1, Mst50, Mst11, Mst7, and Pmk1 attach to late endosomal membranes. Damage to the endosome-vacuole transport system influences Pmk1 phosphorylation. When Msb2 senses a plant signal, it internalizes and activates Ras2 on endosome membrane surfaces, transmitting the signal to Pmk1 via Mst11 and Mst7. Signal-sensing and delivery proteins are ubiquitinated and sorted for degradation in late endosomes and vacuoles, terminating signaling. Plant penetration and lowered intracellular turgor are required for the transition from late endosomes to vacuoles in appressoria. Our findings uncover an effective mechanism that scaffolds and controls Pmk1 MAPK signaling through endosomal-vacuolar transport, offering new knowledge for the cytological and molecular mechanisms by which the Pmk1 MAPK pathway modulates development and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Qing Wang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zhicheng Huang
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Li
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengyun Huang
- School of Medicine, Linyi University, Linyi, 276000, Shandong Province, China
| | - Yingying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaohong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jianping Lu
- Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
2
|
Deng J, Zhang Z, Wang X, Cao Y, Huang H, Wang M, Luo Q. Molecular basis for loss of virulence in Magnaporthe oryzae strain AM16. FRONTIERS IN PLANT SCIENCE 2024; 15:1484214. [PMID: 39711596 PMCID: PMC11659016 DOI: 10.3389/fpls.2024.1484214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
The rapid virulence variation of Magnaporthe oryzae (M. oryzae) to rice is a big challenge for rice blast control. Even though many studies have been done by scientists all over the world, the mechanism of virulence variation in M. oryzae remains elusive. AM16, an avirulent M. oryzae strain reported in our previous study, provides an excellent entry point to explore the mechanism of virulence variation in M. oryzae. In this study, we found that the Pmk1 and Mac1 had specific mutations in strain AM16. The AM16 strains overexpressing Pmk1 Guy11 or (and) Mac1 Guy11 allele from strain Guy11 displayed significantly increasing conidiation, functional appressorium formation, and restoring pathogenicity to rice. Moreover, we observed that the strains overexpressing Mac1 Guy11 had stronger conidia forming capacity than that of the strains overexpressing Pmk1 Guy11, while the appressorium formation rate of strains overexpressing Pmk1 Guy11 was similar to that of strains overexpressing Pmk1 Guy11-Mac1 Guy11, much higher than that of the strains overexpressing Mac1 Guy11. Taken together, our results reveal that the natural mutation of Pmk1 and Mac1 genes are important, but not the sole cause, for the loss of virulence in strain AM16. The functional difference between Pmk1 and Mac1 in the growth and development of M. oryzae was first discovered, providing new insight into the pathogenic mechanism of M. oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
3
|
Jiang Q, Wang T, Li Y, Bi Y, Zhang M, Wang X, Prusky DB. AaSlt2 Is Required for Vegetative Growth, Stress Adaption, Infection Structure Formation, and Virulence in Alternaria alternata. J Fungi (Basel) 2024; 10:774. [PMID: 39590693 PMCID: PMC11595810 DOI: 10.3390/jof10110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Slt2 is an important component of the Slt2-MAPK pathway and plays critical regulatory roles in growth, cell wall integrity, melanin biosynthesis, and pathogenicity of plant fungi. AaSlt2, an ortholog of the Saccharomyces cerevisiae Slt2 gene, was identified from A. alternata in this study, and its function was clarified by knockout of the gene. The ΔAaSlt2 strain of A. alternata was found to be defective in spore morphology, vegetative growth, and sporulation. Analysis of gene expression showed that expression of the AaSlt2 gene was significantly up-regulated during infection structure formation of A. alternata on hydrophobic and pear wax extract-coated surfaces. Further tests on onion epidermis confirmed that spore germination was reduced in the ΔAaSlt2 strain, together with decreased formation of appressorium and infection hyphae. Moreover, the ΔAaSlt2 strain was sensitive to cell wall inhibitors, and showed significantly reduced virulence on pear fruit. Furthermore, cell wall degradation enzyme (CWDE) activities, melanin accumulation, and toxin biosynthesis were significantly lower in the ΔAaSlt2 strain. Overall, the findings demonstrate the critical involvement of AaSlt2 in growth regulation, stress adaptation, infection structure formation, and virulence in A. alternata.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Tiaolan Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- College of Applied Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaojing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Vandermeulen MD, Lorenz MC, Cullen PJ. Conserved signaling modules regulate filamentous growth in fungi: a model for eukaryotic cell differentiation. Genetics 2024; 228:iyae122. [PMID: 39239926 PMCID: PMC11457945 DOI: 10.1093/genetics/iyae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/20/2024] [Indexed: 09/07/2024] Open
Abstract
Eukaryotic organisms are composed of different cell types with defined shapes and functions. Specific cell types are produced by the process of cell differentiation, which is regulated by signal transduction pathways. Signaling pathways regulate cell differentiation by sensing cues and controlling the expression of target genes whose products generate cell types with specific attributes. In studying how cells differentiate, fungi have proved valuable models because of their ease of genetic manipulation and striking cell morphologies. Many fungal species undergo filamentous growth-a specialized growth pattern where cells produce elongated tube-like projections. Filamentous growth promotes expansion into new environments, including invasion into plant and animal hosts by fungal pathogens. The same signaling pathways that regulate filamentous growth in fungi also control cell differentiation throughout eukaryotes and include highly conserved mitogen-activated protein kinase (MAPK) pathways, which is the focus of this review. In many fungal species, mucin-type sensors regulate MAPK pathways to control filamentous growth in response to diverse stimuli. Once activated, MAPK pathways reorganize cell polarity, induce changes in cell adhesion, and promote the secretion of degradative enzymes that mediate access to new environments. However, MAPK pathway regulation is complicated because related pathways can share components with each other yet induce unique responses (i.e. signal specificity). In addition, MAPK pathways function in highly integrated networks with other regulatory pathways (i.e. signal integration). Here, we discuss signal specificity and integration in several yeast models (mainly Saccharomyces cerevisiae and Candida albicans) by focusing on the filamentation MAPK pathway. Because of the strong evolutionary ties between species, a deeper understanding of the regulation of filamentous growth in established models and increasingly diverse fungal species can reveal fundamentally new mechanisms underlying eukaryotic cell differentiation.
Collapse
Affiliation(s)
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School, Houston, TX 77030, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
5
|
Paul DC, Bhattacharjee M. Revisiting the significance of natural protease inhibitors: A comprehensive review. Int J Biol Macromol 2024; 280:135899. [PMID: 39317291 DOI: 10.1016/j.ijbiomac.2024.135899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 09/26/2024]
Abstract
Protease inhibitors (PIs) function as a natural adversary to proteolytic enzymes. They can diminish or inhibit the catalytic properties of proteases, which are crucial for various tasks in the physiology and metabolism of cellular forms. Protease Inhibitors are low molecular weight (5-25 kDa) stable proteins. Plants are a fair source of PIs, so foods containing PIs remarkably influence human health. PIs are usually present in storage tissues of the plant, although they are present in other aerial parts as well. In plants, protease inhibitors participate in vital functions such as maintaining physiological homeostasis, mobilization of storage proteins, defense systems, apoptosis, and other processes. In recent years, plant-derived PIs have shown promising results in treating various diseases including inflammatory conditions, osteoporosis, cardiovascular issues, and brain disorders. The primary goal of this review is to provide a comprehensive understanding of the characteristics, applications, and challenges associated with natural protease inhibitors in plants, which draws insights from an extensive examination of 80+ research papers with a focus on their potential in agriculture and medicine. By synthesizing findings from an extensive literature review, this work aims to guide future research directions and innovations in leveraging plant-based PIs for sustainable agricultural practices and advanced therapeutic interventions.
Collapse
Affiliation(s)
- Dhiman Chandra Paul
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India
| | - Minakshi Bhattacharjee
- Programme of Biotechnology, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam 26, India.
| |
Collapse
|
6
|
Shen ZF, Li L, Wang JY, Liao J, Zhang YR, Zhu XM, Wang ZH, Lu JP, Liu XH, Lin FC. Csn5 inhibits autophagy by regulating the ubiquitination of Atg6 and Tor to mediate the pathogenicity of Magnaporthe oryzae. Cell Commun Signal 2024; 22:222. [PMID: 38594767 PMCID: PMC11003145 DOI: 10.1186/s12964-024-01598-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/26/2024] [Indexed: 04/11/2024] Open
Abstract
Csn5 is subunit 5 of the COP9 signalosome (CSN), but the mechanism by which it strictly controls the pathogenicity of pathogenic fungi through autophagy remains unclear. Here, we found that Csn5 deficiency attenuated pathogenicity and enhanced autophagy in Magnaporthe oryzae. MoCSN5 knockout led to overubiquitination and overdegradation of MoTor (the core protein of the TORC1 complex [target of rapamycin]) thereby promoted autophagy. In addition, we identified MoCsn5 as a new interactor of MoAtg6. Atg6 was found to be ubiquitinated through linkage with lysine 48 (K48) in cells, which is necessary for infection-associated autophagy in pathogenic fungi. K48-ubiquitination of Atg6 enhanced its degradation and thereby inhibited autophagic activity. Our experimental results indicated that MoCsn5 promoted K48-ubiquitination of MoAtg6, which reduced the MoAtg6 protein content and thus inhibited autophagy. Aberrant ubiquitination and autophagy in ΔMocsn5 led to pleiotropic defects in the growth, development, stress resistance, and pathogenicity of M. oryzae. In summary, our study revealed a novel mechanism by which Csn5 regulates autophagy and pathogenicity in rice blast fungus through ubiquitination.
Collapse
Affiliation(s)
- Zi-Fang Shen
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jing-Yi Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian Liao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yun-Ran Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Zi-He Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jian-Ping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Zhejiang Provincial Key Laboratory of Agricultural Microbiomics, Key Laboratory of Agricultural Microbiome (MARA), Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Huang Z, Cao H, Wang H, Huang P, Wang J, Cai Y, Wang Q, Li Y, Wang J, Liu X, Lin F, Lu J. The triglyceride catabolism regulated by a serine/threonine protein phosphatase, Smek1, is required for development and plant infection in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2023; 24:1256-1272. [PMID: 37357820 PMCID: PMC10502837 DOI: 10.1111/mpp.13368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/21/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Magnaporthe oryzae is a pathogenic fungus that seriously harms rice production. Phosphatases and carbon metabolism play crucial roles in the growth and development of eukaryotes. However, it remains unclear how serine/threonine phosphatases regulate the catabolism of triglycerides, a major form of stored lipids. In this study, we identified a serine/threonine protein phosphatase regulatory subunit, Smek1, which is required for the growth, conidiation, and virulence of M. oryzae. Deletion of SMEK1 led to defects in the utilization of lipids, arabinose, glycerol, and ethanol. In glucose medium, the expression of genes involved in lipolysis, long-chain fatty acid degradation, β-oxidation, and the glyoxylate cycle increased in the Δsmek1 mutant, which is consistent with ΔcreA in which a carbon catabolite repressor CREA was deleted. In lipid medium, the expression of genes involved in long-chain fatty acid degradation, β-oxidation, the glyoxylate cycle, and utilization of arabinose, ethanol, or glycerol decreased in the Δsmek1 mutant, which is consistent with Δcrf1 in which a transcription activator CRF1 required for carbon metabolism was deleted. Lipase activity, however, increased in the Δsmek1 mutant in both glucose and lipid media. Moreover, Smek1 directly interacted with CreA and Crf1, and dephosphorylated CreA and Crf1 in vivo. The phosphatase Smek1 is therefore a dual-function regulator of the lipid and carbohydrate metabolism, and controls fungal development and virulence by coordinating the functions of CreA and Crf1 in carbon catabolite repression (CCR) and derepression (CCDR).
Collapse
Affiliation(s)
- Zhicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Huijuan Cao
- Institute of Plant ProtectionJiangsu Academy of Agricultural SciencesNanjingChina
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | | | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Ying‐Ying Cai
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Qing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Yan Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xiao‐Hong Liu
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Fu‐Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant Protection and MicrobiologyZhejiang Academy of Agricultural SciencesHangzhouChina
- Institute of BiotechnologyZhejiang UniversityHangzhouChina
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, College of Life SciencesZhejiang UniversityHangzhouChina
| |
Collapse
|
8
|
Xiao Y, Lv W, Tong Q, Xu Z, Wang Z. The RasGEF MoCdc25 regulates vegetative growth, conidiation and appressorium-mediated infection in the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2023; 168:103825. [PMID: 37460083 DOI: 10.1016/j.fgb.2023.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/26/2023]
Abstract
Ras guanine nucleotide exchange factors (RasGEFs) can trigger Ras GTPase activities and play important roles in controlling various cellular processes in eukaryotes. Recently, it has been exhibited that RasGEF Cdc25 regulates morphological differentiation and pathogenicity in several plant pathogenic fungi. However, the role of RasGEFs in Magnaporthe oryzae is largely unknown. In this study, we identified and functionally characterized a RasGEF gene MoCDC25 in M. oryzae, which is orthologous to Saccharomyces cerevisiae CDC25. Targeted gene deletion mutants (ΔMocdc25) were completely nonpathogenic and were severely impaired in hyphal growth, conidiation and appressorium formation. The mutants exhibited highly sensitive response to osmotic, cell wall integrity or oxidative stresses. MoCdc25 physically interacts with the MAPK scaffold Mst50 and the putative Cdc42GEF MoScd1 in yeast two-hybrid assays. Moreover, we found that MoCdc25 was involved in regulating the phosphorylation of the MAP kinases (Pmk1, Mps1, and Osm1). In addition, the intracellular cAMP content in hyphae of the ΔMocdc25 mutants was significantly reduced compared to the parent strain Ku80 and the defect of appressorium formation of the mutants could be partially restored by the supplement of exogenous cAMP. Taken together, we conclude that the RasGEF MoCdc25 regulates vegetative growth, conidiation, appressorium formation and pathogenicity via MAPK and cAMP response pathways in M. oryzae.
Collapse
Affiliation(s)
- Yu Xiao
- State Key Laboratory of Rice Biology and Breeding & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wuyun Lv
- State Key Laboratory of Rice Biology and Breeding & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qi Tong
- State Key Laboratory of Rice Biology and Breeding & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhe Xu
- State Key Laboratory of Rice Biology and Breeding & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhengyi Wang
- State Key Laboratory of Rice Biology and Breeding & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Zhang L, Li D, Lu M, Wu Z, Liu C, Shi Y, Zhang M, Nan Z, Wang W. MoJMJD6, a Nuclear Protein, Regulates Conidial Germination and Appressorium Formation at the Early Stage of Pathogenesis in Magnaporthe oryzae. THE PLANT PATHOLOGY JOURNAL 2023; 39:361-373. [PMID: 37550982 PMCID: PMC10412966 DOI: 10.5423/ppj.oa.12.2022.0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/13/2023] [Accepted: 07/01/2023] [Indexed: 08/09/2023]
Abstract
In plant-pathogen interactions, Magnaporthe oryzae causes blast disease on more than 50 species of 14 monocot plants, including important crops such as rice, millet, and most 15 recently wheat. M. oryzae is a model fungus for studying plant-microbe interaction, and the main source for fungal pathogenesis in the field. Here we report that MoJMJD6 is required for conidium germination and appressorium formation in M. oryzae. We obtained MoJMJD6 mutants (ΔMojmjd6) using a target gene replacement strategy. The MoJMD6 deletion mutants were delayed for conidium germination, glycogen, and lipid droplets utilization and consequently had decreased virulence. In the ΔMojmjd6 null mutants, global histone methyltransferase modifications (H3K4me3, H3K9me3, H3K27me3, and H3K36me2/3) of the genome were unaffected. Taken together, our results indicated that MoJMJD6 function as a nuclear protein which plays an important role in conidium germination and appressorium formation in the M. oryzae. Our work provides insights into MoJMJD6-mediated regulation in the early stage of pathogenesis in plant fungi.
Collapse
Affiliation(s)
| | | | - Min Lu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, College of Plant Science and Technology, Beijing University of Agriculture, Beijing,
China
| | - Zechi Wu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, College of Plant Science and Technology, Beijing University of Agriculture, Beijing,
China
| | - Chaotian Liu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, College of Plant Science and Technology, Beijing University of Agriculture, Beijing,
China
| | - Yingying Shi
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, College of Plant Science and Technology, Beijing University of Agriculture, Beijing,
China
| | - Mengyu Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, College of Plant Science and Technology, Beijing University of Agriculture, Beijing,
China
| | - Zhangjie Nan
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, College of Plant Science and Technology, Beijing University of Agriculture, Beijing,
China
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, Department of Agronomy, College of Plant Science and Technology, Beijing University of Agriculture, Beijing,
China
| |
Collapse
|
10
|
Appressoria-Small but Incredibly Powerful Structures in Plant-Pathogen Interactions. Int J Mol Sci 2023; 24:ijms24032141. [PMID: 36768468 PMCID: PMC9917257 DOI: 10.3390/ijms24032141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Plant-pathogenic fungi are responsible for many of the most severe crop diseases in the world and remain very challenging to control. Improving current protection strategies or designating new measures based on an overall understanding of molecular host-pathogen interaction mechanisms could be helpful for disease management. The attachment and penetration of the plant surface are the most important events among diverse plant-fungi interactions. Fungi evolved as small but incredibly powerful infection structure appressoria to facilitate attachment and penetration. Appressoria are indispensable for many diseases, such as rusts, powdery mildews, and blast diseases, as well as devastating oomycete diseases. Investigation into the formation of plant-pathogen appressoria contributes to improving the understanding of the molecular mechanisms of plant-pathogen interactions. Fungal host attachment is a vital step of fungal pathogenesis. Here, we review recent advances in the molecular mechanisms regulating the formation of appressoria. Additionally, some biocontrol agents were revealed to act on appressorium. The regulation of fungal adhesion during the infective process by acting on appressoria formation is expected to prevent the occurrence of crop disease caused by some pathogenic fungi.
Collapse
|
11
|
Qian H, Sun L, Wu M, Zhao W, Liu M, Liang S, Zhu X, Li L, Su Z, Lu J, Lin F, Liu X. The COPII subunit MoSec24B is involved in development, pathogenicity and autophagy in the rice blast fungus. FRONTIERS IN PLANT SCIENCE 2023; 13:1074107. [PMID: 36699840 PMCID: PMC9868959 DOI: 10.3389/fpls.2022.1074107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The endoplasmic reticulum (ER) acts as the starting point of the secretory pathway, where approximately one-third of the proteins are correctly folded and modified, loaded into vesicles, and transported to the Golgi for further processing and modification. In this process, COPII vesicles are responsible for transporting cargo proteins from the ER to the Golgi. Here, we identified the inner shell subunit of COPII vesicles (MoSec24B) and explored the importance of MoSec24B in the rice blast fungus. The targeted disruption of MoSec24B led to decreased growth, reduced conidiation, restricted glycogen and lipids utilization, sensitivity to the cell wall and hypertonic stress, the failure of septin-mediated repolarization of appressorium, impaired appressorium turgor pressure, and decreased ability to infect, which resulted in reduced pathogenicity to the host plant. Furthermore, MoSec24B functions in the three mitogen-activated protein kinase (MAPK) signaling pathways by acting with MoMst50. Deletion of MoSec24B caused reduced lipidation of MoAtg8, accelerated degradation of exogenously introduced GFP-MoAtg8, and increased lipidation of MoAtg8 upon treatment with a late inhibitor of autophagy (BafA1), suggesting that MoSec24B regulates the fusion of late autophagosomes with vacuoles. Together, these results suggest that MoSec24B exerts a significant role in fungal development, the pathogenesis of filamentous fungi and autophagy.
Collapse
Affiliation(s)
- Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lixiao Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenhui Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenzhu Su
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
The Plant Homeodomain Protein Clp1 Regulates Fungal Development, Virulence, and Autophagy Homeostasis in Magnaporthe oryzae. Microbiol Spectr 2022; 10:e0102122. [PMID: 36036638 PMCID: PMC9602895 DOI: 10.1128/spectrum.01021-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is a serious threat to global grain yield and food security. Cti6 is a nuclear protein containing a plant homeodomain (PHD) that is involved in transcriptional regulation in Saccharomyces cerevisiae. The biological function of its homologous protein in M. oryzae has been elusive. Here, we report Clp1 with a PHD domain in M. oryzae, a homologous protein of the yeast Cti6. Clp1 was mainly located in the nucleus and partly in the vesicles. Clp1 colocalized and interacted with the autophagy-related proteins Atg5, Atg7, Atg16, Atg24, and Atg28 at preautophagosomal structures (PAS) and autophagosomes, and the loss of Clp1 increased the fungal background autophagy level. Δclp1 displayed reduced hyphal growth and hyperbranching, abnormal fungal morphology (including colony, spore, and appressorium), hindered appressorial glycogen metabolism and turgor production, weakened plant infection, and decreased virulence. The PHD is indispensable for the function of Clp1. Therefore, this study revealed that Clp1 regulates development and pathogenicity by maintaining autophagy homeostasis and affecting gene transcription in M. oryzae. IMPORTANCE The fungal pathogen Magnaporthe oryzae causes serious diseases of grasses such as rice and wheat. Autophagy plays an indispensable role in the pathogenic process of M. oryzae. Here, we report a Cti6-like protein, Clp1, that is involved in fungal development and infection of plants through controlling autophagy homeostasis in the cytoplasm and gene transcription in the nucleus in M. oryzae. This study will help us to understand an elaborated molecular mechanism of autophagy, gene transcription, and virulence in the rice blast fungus.
Collapse
|
13
|
Li Q, Chen X, Lin L, Zhang L, Wang L, Bao J, Zhang D. Transcriptomic Dynamics of Active and Inactive States of Rho GTPase MoRho3 in Magnaporthe oryzae. J Fungi (Basel) 2022; 8:jof8101060. [PMID: 36294629 PMCID: PMC9605073 DOI: 10.3390/jof8101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
The small Rho GTPase acts as a molecular switch in eukaryotic signal transduction, which plays a critical role in polar cell growth and vesicle trafficking. Previous studies demonstrated that constitutively active (CA) mutant strains, of MoRho3-CA were defective in appressorium formation. While dominant-negative (DN) mutant strains MoRho3-DN shows defects in polar growth. However, the molecular dynamics of MoRho3-mediated regulatory networks in the pathogenesis of Magnaporthe oryzae still needs to be uncovered. Here, we perform comparative transcriptomic profiling of MoRho3-CA and MoRho3-DN mutant strains using a high-throughput RNA sequencing approach. We find that genetic manipulation of MoRho3 significantly disrupts the expression of 28 homologs of Saccharomyces cerevisiae Rho3-interacting proteins, including EXO70, BNI1, and BNI2 in the MoRho3 CA, DN mutant strains. Functional enrichment analyses of up-regulated DEGs reveal a significant enrichment of genes associated with ribosome biogenesis in the MoRho3-CA mutant strain. Down-regulated DEGs in the MoRho3-CA mutant strains shows significant enrichment in starch/sucrose metabolism and the ABC transporter pathway. Moreover, analyses of down-regulated DEGs in the in MoRho3-DN reveals an over-representation of genes enriched in metabolic pathways. In addition, we observe a significant suppression in the expression levels of secreted proteins suppressed in both MoRho3-CA and DN mutant strains. Together, our results uncover expression dynamics mediated by two states of the small GTPase MoRho3, demonstrating its crucial roles in regulating the expression of ribosome biogenesis and secreted proteins.
Collapse
Affiliation(s)
- Qian Li
- Meishan Vocational Technical College, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Q.L.); (D.Z.)
| | - Xi Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianyu Lin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianhu Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Li Wang
- Meishan Vocational Technical College, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiandong Bao
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (Q.L.); (D.Z.)
| |
Collapse
|
14
|
Ryder LS, Cruz-Mireles N, Molinari C, Eisermann I, Eseola AB, Talbot NJ. The appressorium at a glance. J Cell Sci 2022; 135:276040. [PMID: 35856284 DOI: 10.1242/jcs.259857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many plant pathogenic fungi have the capacity to infect their plant hosts using specialised cells called appressoria. These structures act as a gateway between the fungus and host, allowing entry to internal tissues. Appressoria apply enormous physical force to rupture the plant surface, or use a battery of enzymes to digest the cuticle and plant cell wall. Appressoria also facilitate focal secretion of effectors at the point of plant infection to suppress plant immunity. These infection cells develop in response to the physical characteristics of the leaf surface, starvation stress and signals from the plant. Appressorium morphogenesis has been linked to septin-mediated reorganisation of F-actin and microtubule networks of the cytoskeleton, and remodelling of the fungal cell wall. In this Cell Science at a Glance and accompanying poster, we highlight recent advances in our understanding of the mechanisms of appressorium-mediated infection, and compare development on the leaf surface to the biology of invasive growth by pathogenic fungi. Finally, we outline key gaps in our current knowledge of appressorium cell biology.
Collapse
Affiliation(s)
- Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Camilla Molinari
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice B Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
15
|
Zhao J, Sun P, Sun Q, Li R, Qin Z, Sha G, Zhou Y, Bi R, Zhang H, Zheng L, Chen X, Yang L, Li Q, Li G. The MoPah1 phosphatidate phosphatase is involved in lipid metabolism, development, and pathogenesis in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:720-732. [PMID: 35191164 PMCID: PMC8995063 DOI: 10.1111/mpp.13193] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 05/23/2023]
Abstract
As with the majority of the hemibiotrophic fungal pathogens, the rice blast fungus Magnaporthe oryzae uses highly specialized infection structures called appressoria for plant penetration. Appressoria differentiated from germ tubes rely on enormous turgor pressure to directly penetrate the plant cell, in which process lipid metabolism plays a critical role. In this study, we characterized the MoPAH1 gene in M. oryzae, encoding a putative highly conserved phosphatidate phosphatase. The expression of MoPAH1 was up-regulated during plant infection. The MoPah1 protein is expressed at all developmental and infection stages, and is localized to the cytoplasm. Disruption of MoPAH1 causes pleiotropic defects in vegetative growth, sporulation, and heat tolerance. The lipid profile is significantly altered in the Mopah1 mutant. Lipidomics assays showed that the level of phosphatidic acid (PA) was increased in the mutant, which had reduced levels of diacylglycerol and triacylglycerol. Using a PA biosensor, we showed that the increased level of PA in the Mopah1 mutant was primarily accumulated in the vacuole. The Mopah1 mutant was blocked in both conidiation and the formation of appressorium-like structures at hyphal tips. It was nonpathogenic and failed to cause any blast lesions on rice and barley seedlings. RNA sequencing analysis revealed that MoPah1 regulates the expression of transcription factors critical for various developmental and infection-related processes. The Mopah1 mutant was reduced in the expression and phosphorylation of Pmk1 MAP kinase and delayed in autophagy. Our study demonstrates that MoPah1 is necessary for lipid metabolism, fungal development, and pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Juan Zhao
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Peng Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Qiping Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Renjian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Ziting Qin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Gan Sha
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Yaru Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Ruiqing Bi
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Haifeng Zhang
- Department of Plant PathologyKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Long Yang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| | - Qiang Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, The Provincial Key Laboratory of Plant Pathology of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
16
|
Sun L, Qian H, Wu M, Zhao W, Liu M, Wei Y, Zhu X, Li L, Lu J, Lin F, Liu X. A Subunit of ESCRT-III, MoIst1, Is Involved in Fungal Development, Pathogenicity, and Autophagy in Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:845139. [PMID: 35463448 PMCID: PMC9021896 DOI: 10.3389/fpls.2022.845139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The culprit of rice blast, Magnaporthe oryzae, is a filamentous fungus that seriously affects the yield and quality of rice worldwide. MoIst1, a subunit of ESCRT-III, is involved in identified ubiquitinated proteins and transports them into the intraluminal vesicles of multivesicular bodies (MVBs) for degradation in lysosomes. Here, we identify and characterize MoIst1 in M. oryzae. Disruption of MoIst1 leads to a significant decrease in sporulation and formation of appressoria, defects in response to oxidative stress, cell wall stress, hyperosmotic stress, and reduced pathogenicity. Deletion of MoIst1 also caused the decreased Pmk1 phosphorylation levels, appressorium formation, the delayed translocation and degradation of lipid droplets and glycogen, resulting in a decreased appressorium turgor. In addition, deletion of MoIst1 leads to an abnormal autophagy. In summary, our results indicate that MoIst1 is involved in sporulation, appressorium development, plant penetration, pathogenicity, and autophagy in M. oryzae.
Collapse
Affiliation(s)
- Lixiao Sun
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hui Qian
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Minghua Wu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Wenhui Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Mengyu Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunyun Wei
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianping Lu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Fucheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaohong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|