1
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
2
|
Xiong X, Ma J, He Q, Chen X, Wang Z, Li L, Xu J, Xie J, Rao Y. Characteristics and potential biomarkers of flavor compounds in four Chinese indigenous chicken breeds. Front Nutr 2023; 10:1279141. [PMID: 37899822 PMCID: PMC10600453 DOI: 10.3389/fnut.2023.1279141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023] Open
Abstract
Chinese indigenous chickens have a long history of natural and artificial selection and are popular for their excellent meat quality and unique flavor. This study investigated six meat quality-related traits in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens. Two-dimensional gas chromatography-time-of-flight mass spectrometry was used to detect unique flavors in 24 breast muscle samples from the same phenotyped chickens. Overall, 685, 618, 502, and 487 volatile organic compounds were identified in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components were separated into eight categories, including hydrocarbons and aldehydes. Multivariate analyses of the identified flavor components revealed some outstanding features of these breeds. For example, the hydrocarbons (22.09%) and aldehydes (14.76%) were higher in Ningdu yellow chickens and the highest content of N, N-dimethyl-methylamine was in Ningdu yellow, Baier yellow, and Shengze 901 chickens, indicating the maximum attribution to the overall flavor (ROAV = 439.57, 289.21, and 422.80). Furthermore, we found that 27 flavor compounds differed significantly among the four Chinese breeds, including 20 (e.g., 1-octen-3-ol), two (e.g., 2-methyl-naphthalene), four (e.g., 2,6-lutidine), and one (benzophenone) flavor components were showed significant enrichment in Ningdu yellow, Baier yellow, Kangle, and Shengze 901 chickens, respectively. The flavor components enriched in each breed were key biomarkers distinguishing breeds and most were significantly correlated with meat quality trait phenotypes. These results provide novel insights into indigenous Chinese chicken meat flavors.
Collapse
Affiliation(s)
- Xinwei Xiong
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jinge Ma
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Qin He
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Zhangfeng Wang
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Longyun Li
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jiguo Xu
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yousheng Rao
- Key Laboratory for Genetic Improvement of Indigenous Chicken Breeds of Jiangxi Province, Nanchang Normal University, Nanchang, China
| |
Collapse
|
3
|
Li JY, Yang C, Xu J, Lu HP, Liu JX. The hot science in rice research: How rice plants cope with heat stress. PLANT, CELL & ENVIRONMENT 2023; 46:1087-1103. [PMID: 36478590 DOI: 10.1111/pce.14509] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Global climate change has great impacts on plant growth and development, reducing crop productivity worldwide. Rice (Oryza sativa L.), one of the world's most important food crops, is susceptible to high-temperature stress from seedling stage to reproductive stage. In this review, we summarize recent advances in understanding the molecular mechanisms underlying heat stress responses in rice, including heat sensing and signalling, transcriptional regulation, transcript processing, protein translation, and post-translational regulation. We also highlight the irreversible effects of high temperature on reproduction and grain quality in rice. Finally, we discuss challenges and opportunities for future research on heat stress responses in rice.
Collapse
Affiliation(s)
- Jin-Yu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chuang Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hai-Ping Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Rahmat BPN, Octavianis G, Budiarto R, Jadid N, Widiastuti A, Matra DD, Ezura H, Mubarok S. SlIAA9 Mutation Maintains Photosynthetic Capabilities under Heat-Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:378. [PMID: 36679090 PMCID: PMC9867002 DOI: 10.3390/plants12020378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Tomato is one of the most widely consumed horticultural products. However, tomato is very sensitive to changes in temperature. Daily average temperatures above 32 °C severely reduced tomato plant growth, development, and productivity. Therefore, climate change-induced global warming is a major threat to future tomato production. Good photosynthetic capability under heat stress conditions is known to be a major sign of heat tolerance. Tomato INDOLE-ACETIC-ACID (SlIAA9) is a transcriptional repressor in auxin signaling. SlIAA9 mutation caused heightened endogenous auxin response and biosynthesis within plant tissues. In this study, we studied the photosynthetic capability of iaa9-3 and iaa9-5 mutants under heat-stress conditions. We discovered that both iaa9-3 and iaa9-5 could maintain their photosynthetic capability after 14 days of heat treatment (>40 °C), differing from Wild Type-Micro-Tom (WT-MT) tomato. Both iaa9 mutants had higher net photosynthetic rate, stomatal conductance, leaf total chlorophyll, leaf carotenoids, Fv/Fm value, and lower leaf MDA than WT-MT. These results suggested that the SlIAA9 mutation benefits plant adaptation to heat stress.
Collapse
Affiliation(s)
- Bayu Pradana Nur Rahmat
- Master Program of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Grace Octavianis
- Under Graduate Program of Agrotechnology, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Rahmat Budiarto
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Nurul Jadid
- Department of Biology, Institut Teknologi Sepuluh Nopember, Surabaya 60111, Indonesia
| | - Ani Widiastuti
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Deden Derajat Matra
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor 16680, Indonesia
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Syariful Mubarok
- Department of Agronomy, Faculty of Agriculture, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
5
|
Pantoja-Benavides AD, Garces-Varon G, Restrepo-Díaz H. Foliar cytokinins or brassinosteroids applications influence the rice plant acclimatization to combined heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:983276. [PMID: 36618669 PMCID: PMC9815704 DOI: 10.3389/fpls.2022.983276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/31/2022] [Indexed: 06/17/2023]
Abstract
The effect of different foliar sprays numbers of cytokinins - (CK) and brassinosteroids - (BR) on the physiological, biochemical, and panicle parameters of rice plants subjected to combined heat stress (high day/night temperatures) were studied in three different experiments. The treatments established for the first (E1) and second (E2) experiments were the following: i) absolute control, ii) stress control, iii) heat stress + one foliar spray of CK, iv) heat stress + two foliar sprays of CK, v) heat stress + three foliar sprays of CK, vi) heat stress + one foliar spray of BR, vii) heat stress + two foliar sprays of BR, or viii) heat stress + three foliar sprays of BR. For the third experiment (E3), the treatments were the following: i) absolute control, ii) stress control, iii) heat stress + three foliar applications of CK, iv) heat stress + three foliar applications of BR. Rice-stressed plants and sprayed with three foliar sprays of CK or BR had a better stomatal conductance in E1 and E2 compared to their heat-stressed control. The relative tolerance index suggests that three CK or BR applications helped to mitigate the combined heat stress in both experiments. The foliar CK or BR applications at the flowering and grain-filling stages in rice-stressed plants increased Fv/Fm ratio and panicle characteristics (number of filled spikelets and the percentage of panicle blanking in E3). In conclusion, foliar applications of BR or CK can be considered an agronomic strategy to help improve the negative effect of combined heat stress conditions on the physiological behavior of rice plants during different phenological stages.
Collapse
Affiliation(s)
| | | | - Hermann Restrepo-Díaz
- Universidad Nacional de Colombia, Sede Bogotá, Facultad de Ciencias Agrarias, Departamento de Agronomía, Bogotá, Colombia
| |
Collapse
|
6
|
Ruan S, Luo H, Wu F, He L, Lai R, Tang X. Organic cultivation induced regulation in yield formation, grain quality attributes, and volatile organic compounds of fragrant rice. Food Chem 2022; 405:134845. [DOI: 10.1016/j.foodchem.2022.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
7
|
Venugopalan VK, Nath R, Sengupta K, Pal AK, Banerjee S, Banerjee P, Chandran MAS, Roy S, Sharma L, Hossain A, Siddique KHM. Foliar Spray of Micronutrients Alleviates Heat and Moisture Stress in Lentil ( Lens culinaris Medik) Grown Under Rainfed Field Conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:847743. [PMID: 35463440 PMCID: PMC9021876 DOI: 10.3389/fpls.2022.847743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 05/04/2023]
Abstract
The simultaneous occurrence of high temperature and moisture stress during the reproductive stage of lentil (Lens culinaris Medik) constrains yield potential by disrupting the plant defense system. We studied the detrimental outcomes of heat and moisture stress on rainfed lentils under residual moisture in a field experiment conducted on clay loam soil (Aeric Haplaquept) in eastern India from 2018 to 2019 and from 2019 to 2020 in winter seasons. Lentil was sown on two dates (November and December) to expose the later sowing to higher temperatures and moisture stress. Foliar sprays of boron (0.2% B), zinc (0.5% Zn), and iron (0.5% Fe) were applied individually or in combination at the pre-flowering and pod development stages. High temperatures increased malondialdehyde (MDA) content due to membrane degradation and reduced leaf chlorophyll content, net photosynthetic rate, stomatal conductance, water potential, and yield (kg ha-1). The nutrient treatments affected the growth and physiology of stressed lentil plants. The B+Fe treatment outperformed the other nutrient treatments for both sowing dates, increasing peroxidase (POX) and ascorbate peroxidase (APX) activities, chlorophyll content, net photosynthetic rate, stomatal conductance, relative leaf water content (RLWC), seed filling duration, seed growth rate, and yield per hectare. The B+Fe treatment increased seed yield by 35-38% in late-sown lentils (December). In addition, the micronutrient treatments positively impacted physiological responses under heat and moisture stress with B+Fe and B+Fe+Zn alleviating heat and moisture stress-induced perturbations. Moreover, the exogenous nutrients helped in improving physiochemical attributes, such as chlorophyll content, net photosynthetic rate, stomatal conductance, water potential, seed filling duration, and seed growth rate.
Collapse
Affiliation(s)
- Visha Kumari Venugopalan
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
- Indian Council of Agricultural Research (ICAR)-Central Research Institute for Dryland Agriculture, Hyderabad, India
| | - Rajib Nath
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Kajal Sengupta
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Anjan K. Pal
- Department of Crop Physiology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Saon Banerjee
- Department of Agricultural Meteorology and Physics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Purabi Banerjee
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Malamal A. Sarath Chandran
- Indian Council of Agricultural Research (ICAR)-Central Research Institute for Dryland Agriculture, Hyderabad, India
- Department of Agricultural Meteorology and Physics, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, India
| | - Suman Roy
- Indian Council of Agricultural Research (ICAR)-Central Research Institute for Jute and Allied Fibers, Kolkata, India
| | - Laxmi Sharma
- Indian Council of Agricultural Research (ICAR)-Central Research Institute for Jute and Allied Fibers, Kolkata, India
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA), Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Jócsák I, Gyalog H, Hoffmann R, Somfalvi-Tóth K. In-Vivo Biophoton Emission, Physiological and Oxidative Responses of Biostimulant-Treated Winter Wheat (Triticum eastivum L.) as Seed Priming Possibility, for Heat Stress Alleviation. PLANTS 2022; 11:plants11050640. [PMID: 35270110 PMCID: PMC8912532 DOI: 10.3390/plants11050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
High temperature induces oxidative processes in wheat, the alleviation of which is promising using biostimulants. Priming has been used for enhancing stress tolerance of seedlings. However, the usage of biostimulants for priming is an unexplored area under either normal or stress conditions. Therefore, the aim of our study was to evaluate the heat stress alleviation capability of differentially applied biostimulant treatments on wheat seedlings. The investigation included stress parameters (fresh/dry weight ratio, chlorophyll content estimation, antioxidant capacity and lipid oxidation) combined with biophoton emission measurement, since with this latter non-invasive technique, it is possible to measure and elucidate in vivo stress conditions in real-time using lipid oxidation-related photon emissions. We confirmed that a single biostimulant pretreatment increased antioxidant capacity and decreased biophoton release and lipid oxidation, indicating the reduction of the harmful effects of heat stress. Therefore, biophoton emission proved to be suitable for detecting and imaging the effects of heat stress on wheat seedlings for the first time. Two-way analysis of variance (ANOVA) revealed that biostimulant (p = 4.01 × 10−7) treatments, temperature (p = 9.07 × 10−8), and the interaction of the two factors (p = 2.07 × 10−5) had a significant effect on the overall count per second values of biophoton emission, predicting more efficient biostimulant utilization practices, even for seed priming purposes.
Collapse
|
9
|
Luo H, Xing P, Liu J, Pan S, Tang X, Duan M. Selenium improved antioxidant response and photosynthesis in fragrant rice ( Oryza sativa L.) seedlings during drought stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2849-2858. [PMID: 35035140 PMCID: PMC8720130 DOI: 10.1007/s12298-021-01117-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 05/13/2023]
Abstract
Drought stress substantially influences the growth and development of many crops. The present study was conducted to investigate the effects of exogenous selenium on the growth, photosynthesis and antioxidant response of fragrant rice seedlings under drought stress. In a pot experiment, fragrant rice seedlings were subjected to drought stress (soil water potential was controlled at - 0.025 ± 5 MPa) and foliar application of selenium (Se) at 0, 10, 30, and 50 μmol L-1. Rice seedlings not exposed to drought stress and Se were used as control. Exposure of fragrant rice seedlings to drought stress resulted in significant (P < 0.05) decrease in fresh weight, dry weight, plant height and stem diameter relative to the control. Total chlorophyll, chlorophyll a, chlorophyll b and carotenoid were 20.54-27.24%, 20.82-26.83%, 19.45-29.07% and 21.49-29.17% lower with drought stress treatment compared to CK. Drought stress also significantly (P < 0.05) decreased net photosynthetic rate and soluble protein content. However, Se treatments (30 and 50 μmol L-1) substantially improved fresh weight and dry weight of fragrant rice seedlings under drought stress. Net photosynthetic rate, activities of antioxidant enzymes (GPX, SOD and CAT) and soluble protein content in rice seedlings under drought stress improved due to Se treatment. Higher transcript levels of antioxidant-related genes (GPX1, GPX4, CATA and CATC) were also observed with Se treatment.
Collapse
Affiliation(s)
- Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642 China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642 China
| | - Pipeng Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642 China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642 China
| | - Jinhai Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642 China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642 China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642 China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642 China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642 China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642 China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642 China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642 China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642 China
| |
Collapse
|