1
|
Rajpal VR, Singh A, Kathpalia R, Thakur RK, Khan MK, Pandey A, Hamurcu M, Raina SN. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1127239. [PMID: 36998696 PMCID: PMC10044020 DOI: 10.3389/fpls.2023.1127239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 05/31/2023]
Abstract
Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| |
Collapse
|
2
|
Roy A, Sahu PK, Das C, Bhattacharyya S, Raina A, Mondal S. Conventional and new-breeding technologies for improving disease resistance in lentil ( Lens culinaris Medik). FRONTIERS IN PLANT SCIENCE 2023; 13:1001682. [PMID: 36743558 PMCID: PMC9896981 DOI: 10.3389/fpls.2022.1001682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/02/2022] [Indexed: 06/02/2023]
Abstract
Lentil, an important cool season food legume, is a rich source of easily digestible protein, folic acid, bio-available iron, and zinc nutrients. Lentil grows mainly as a sole crop in the winter after harvesting rice in South Asia. However, the annual productivity is low due to its slow growth during the early phase, competitive weed infestation, and disease outbreaks during the crop growth period. Disease resistance breeding has been practiced for a long time to enhance resistance to various diseases. Often the sources of resistance are available in wild crop relatives. Thus, wide hybridization and the ovule rescue technique have helped to introgress the resistance trait into cultivated lentils. Besides hybridization, induced mutagenesis contributed immensely in creating variability for disease tolerance, and several disease-resistant mutant lines have been developed. However, to overcome the limitations of traditional breeding approaches, advancement in molecular marker technologies, and genomics has helped to develop disease-resistant and climate-resilient lentil varieties with more precision and efficiency. This review describes types of diseases, disease screening methods, the role of conventional and new breeding technologies in alleviating disease-incurred damage and progress toward making lentil varieties more resilient to disease outbreaks under the shadow of climate change.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur West Bengal, India
- Department of Genetics and Plant Breeding, Ramakrishna Mission Vivekananda Educational & Research Institute (RKMVERI), Ramkrishna Mission Ashrama, Kolkata, India
| | - Parmeshwar K. Sahu
- Department of Genetics and Plant Breeding, College of Agriculture, Indira Gandhi Krishi Viswavidyalaya, Raipur, Chhattisgarh, India
| | - Camellia Das
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur West Bengal, India
| | - Somnath Bhattacharyya
- Department of Genetics and Plant Breeding, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur West Bengal, India
| | - Aamir Raina
- Mutation Breeding Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Botany Section, Women’s College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Suvendu Mondal
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| |
Collapse
|
3
|
Salgotra RK, Stewart CN. Genetic Augmentation of Legume Crops Using Genomic Resources and Genotyping Platforms for Nutritional Food Security. PLANTS (BASEL, SWITZERLAND) 2022; 11:1866. [PMID: 35890499 PMCID: PMC9325189 DOI: 10.3390/plants11141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in next generation sequencing (NGS) technologies have led the surge of genomic resources for the improvement legume crops. Advances in high throughput genotyping (HTG) and high throughput phenotyping (HTP) enable legume breeders to improve legume crops more precisely and efficiently. Now, the legume breeder can reshuffle the natural gene combinations of their choice to enhance the genetic potential of crops. These genomic resources are efficiently deployed through molecular breeding approaches for genetic augmentation of important legume crops, such as chickpea, cowpea, pigeonpea, groundnut, common bean, lentil, pea, as well as other underutilized legume crops. In the future, advances in NGS, HTG, and HTP technologies will help in the identification and assembly of superior haplotypes to tailor the legume crop varieties through haplotype-based breeding. This review article focuses on the recent development of genomic resource databases and their deployment in legume molecular breeding programmes to secure global food security.
Collapse
Affiliation(s)
- Romesh K. Salgotra
- School of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, Jammu 190008, India
| | | |
Collapse
|
4
|
Jha UC, Sharma KD, Nayyar H, Parida SK, Siddique KHM. Breeding and Genomics Interventions for Developing Ascochyta Blight Resistant Grain Legumes. Int J Mol Sci 2022; 23:ijms23042217. [PMID: 35216334 PMCID: PMC8880496 DOI: 10.3390/ijms23042217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
Grain legumes are a key food source for ensuring global food security and sustaining agriculture. However, grain legume production is challenged by growing disease incidence due to global climate change. Ascochyta blight (AB) is a major disease, causing substantial yield losses in grain legumes worldwide. Harnessing the untapped reserve of global grain legume germplasm, landraces, and crop wild relatives (CWRs) could help minimize yield losses caused by AB infection in grain legumes. Several genetic determinants controlling AB resistance in various grain legumes have been identified following classical genetic and conventional breeding approaches. However, the advent of molecular markers, biparental quantitative trait loci (QTL) mapping, genome-wide association studies, genomic resources developed from various genome sequence assemblies, and whole-genome resequencing of global germplasm has revealed AB-resistant gene(s)/QTL/genomic regions/haplotypes on various linkage groups. These genomics resources allow plant breeders to embrace genomics-assisted selection for developing/transferring AB-resistant genomic regions to elite cultivars with great precision. Likewise, advances in functional genomics, especially transcriptomics and proteomics, have assisted in discovering possible candidate gene(s) and proteins and the underlying molecular mechanisms of AB resistance in various grain legumes. We discuss how emerging cutting-edge next-generation breeding tools, such as rapid generation advancement, field-based high-throughput phenotyping tools, genomic selection, and CRISPR/Cas9, could be used for fast-tracking AB-resistant grain legumes to meet the increasing demand for grain legume-based protein diets and thus ensuring global food security.
Collapse
Affiliation(s)
- Uday C. Jha
- Indian Institute of Pulses Research, Kanpur 208024, India
- Correspondence: (U.C.J.); (K.H.M.S.)
| | - Kamal Dev Sharma
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur 176062, India;
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh 0172, India;
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), New Delhi 110001, India;
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
- Correspondence: (U.C.J.); (K.H.M.S.)
| |
Collapse
|
5
|
Samantara K, Bohra A, Mohapatra SR, Prihatini R, Asibe F, Singh L, Reyes VP, Tiwari A, Maurya AK, Croser JS, Wani SH, Siddique KHM, Varshney RK. Breeding More Crops in Less Time: A Perspective on Speed Breeding. BIOLOGY 2022; 11:275. [PMID: 35205141 PMCID: PMC8869642 DOI: 10.3390/biology11020275] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022]
Abstract
Breeding crops in a conventional way demands considerable time, space, inputs for selection, and the subsequent crossing of desirable plants. The duration of the seed-to-seed cycle is one of the crucial bottlenecks in the progress of plant research and breeding. In this context, speed breeding (SB), relying mainly on photoperiod extension, temperature control, and early seed harvest, has the potential to accelerate the rate of plant improvement. Well demonstrated in the case of long-day plants, the SB protocols are being extended to short-day plants to reduce the generation interval time. Flexibility in SB protocols allows them to align and integrate with diverse research purposes including population development, genomic selection, phenotyping, and genomic editing. In this review, we discuss the different SB methodologies and their application to hasten future plant improvement. Though SB has been extensively used in plant phenotyping and the pyramiding of multiple traits for the development of new crop varieties, certain challenges and limitations hamper its widespread application across diverse crops. However, the existing constraints can be resolved by further optimization of the SB protocols for critical food crops and their efficient integration in plant breeding pipelines.
Collapse
Affiliation(s)
- Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Parlakhemundi 761211, Odisha, India;
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur 208024, Uttar Pradesh, India; (A.B.); (A.T.); (A.K.M.)
| | - Sourav Ranjan Mohapatra
- Division of Genetics and Tree Improvement, Forest Research Institute, Dehradun 173230, Uttarakhand, India;
| | - Riry Prihatini
- Indonesian Tropical Fruit Research Institute, Solok 27301, West Sumatera, Indonesia;
| | - Flora Asibe
- International Institute of Tropical Agriculture, Ibadan 200001, Oyo State, Nigeria;
| | - Lokendra Singh
- Department of Genetics and Plant Breeding, Agriculture and Forestry University, Chitwan 44200, Nepal;
| | - Vincent P. Reyes
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Aichi, Japan;
| | - Abha Tiwari
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur 208024, Uttar Pradesh, India; (A.B.); (A.T.); (A.K.M.)
| | - Alok Kumar Maurya
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur 208024, Uttar Pradesh, India; (A.B.); (A.T.); (A.K.M.)
| | - Janine S. Croser
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Shabir Hussain Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Anantnag Khudwani, Srinagar 192101, Jammu and Kashmir, India
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia;
| | - Rajeev K. Varshney
- Centre of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, Andhra Pradesh, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
6
|
Tiwari M, Singh B, Min D, Jagadish SVK. Omics Path to Increasing Productivity in Less-Studied Crops Under Changing Climate-Lentil a Case Study. FRONTIERS IN PLANT SCIENCE 2022; 13:813985. [PMID: 35615121 PMCID: PMC9125188 DOI: 10.3389/fpls.2022.813985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
Conventional breeding techniques for crop improvement have reached their full potential, and hence, alternative routes are required to ensure a sustained genetic gain in lentils. Although high-throughput omics technologies have been effectively employed in major crops, less-studied crops such as lentils have primarily relied on conventional breeding. Application of genomics and transcriptomics in lentils has resulted in linkage maps and identification of QTLs and candidate genes related to agronomically relevant traits and biotic and abiotic stress tolerance. Next-generation sequencing (NGS) complemented with high-throughput phenotyping (HTP) technologies is shown to provide new opportunities to identify genomic regions and marker-trait associations to increase lentil breeding efficiency. Recent introduction of image-based phenotyping has facilitated to discern lentil responses undergoing biotic and abiotic stresses. In lentil, proteomics has been performed using conventional methods such as 2-D gel electrophoresis, leading to the identification of seed-specific proteome. Metabolomic studies have led to identifying key metabolites that help differentiate genotypic responses to drought and salinity stresses. Independent analysis of differentially expressed genes from publicly available transcriptomic studies in lentils identified 329 common transcripts between heat and biotic stresses. Similarly, 19 metabolites were common across legumes, while 31 were common in genotypes exposed to drought and salinity stress. These common but differentially expressed genes/proteins/metabolites provide the starting point for developing high-yielding multi-stress-tolerant lentils. Finally, the review summarizes the current findings from omic studies in lentils and provides directions for integrating these findings into a systems approach to increase lentil productivity and enhance resilience to biotic and abiotic stresses under changing climate.
Collapse
Affiliation(s)
- Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- *Correspondence: Manish Tiwari,
| | - Baljinder Singh
- National Institute of Plant Genome Research, New Delhi, India
| | - Doohong Min
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - S. V. Krishna Jagadish
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
- S. V. Krishna Jagadish,
| |
Collapse
|
7
|
Croser J, Mao D, Dron N, Michelmore S, McMurray L, Preston C, Bruce D, Ogbonnaya FC, Ribalta FM, Hayes J, Lichtenzveig J, Erskine W, Cullis B, Sutton T, Hobson K. Evidence for the Application of Emerging Technologies to Accelerate Crop Improvement - A Collaborative Pipeline to Introgress Herbicide Tolerance Into Chickpea. FRONTIERS IN PLANT SCIENCE 2021; 12:779122. [PMID: 34925421 PMCID: PMC8678039 DOI: 10.3389/fpls.2021.779122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/12/2021] [Indexed: 05/23/2023]
Abstract
Accelerating genetic gain in crop improvement is required to ensure improved yield and yield stability under increasingly challenging climatic conditions. This case study demonstrates the effective confluence of innovative breeding technologies within a collaborative breeding framework to develop and rapidly introgress imidazolinone Group 2 herbicide tolerance into an adapted Australian chickpea genetic background. A well-adapted, high-yielding desi cultivar PBA HatTrick was treated with ethyl methanesulfonate to generate mutations in the ACETOHYDROXYACID SYNTHASE 1 (CaAHAS1) gene. After 2 years of field screening with imidazolinone herbicide across >20 ha and controlled environment progeny screening, two selections were identified which exhibited putative herbicide tolerance. Both selections contained the same single amino acid substitution, from alanine to valine at position 205 (A205V) in the AHAS1 protein, and KASP™ markers were developed to discriminate between tolerant and intolerant genotypes. A pipeline combining conventional crossing and F2 production with accelerated single seed descent from F2:4 and marker-assisted selection at F2 rapidly introgressed the herbicide tolerance trait from one of the mutant selections, D15PAHI002, into PBA Seamer, a desi cultivar adapted to Australian cropping areas. Field evaluation of the derivatives of the D15PAHI002 × PBA Seamer cross was analyzed using a factor analytic mixed model statistical approach designed to accommodate low seed numbers resulting from accelerated single seed descent. To further accelerate trait introgression, field evaluation trials were undertaken concurrent with crop safety testing trials. In 2020, 4 years after the initial cross, an advanced line selection CBA2061, bearing acetohydroxyacid synthase (AHAS) inhibitor tolerance and agronomic and disease resistance traits comparable to parent PBA Seamer, was entered into Australian National Variety Trials as a precursor to cultivar registration. The combination of cross-institutional collaboration and the application of novel pre-breeding platforms and statistical technologies facilitated a 3-year saving compared to a traditional breeding approach. This breeding pipeline can be used as a model to accelerate genetic gain in other self-pollinating species, particularly food legumes.
Collapse
Affiliation(s)
- Janine Croser
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
- Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Dili Mao
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Nicole Dron
- Tamworth Agricultural Institute, New South Wales Department of Primary Industries, Tamworth, NSW, Australia
| | - Simon Michelmore
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | | | - Christopher Preston
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Dylan Bruce
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | | | - Federico Martin Ribalta
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Julie Hayes
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Judith Lichtenzveig
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - William Erskine
- School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia
| | - Brian Cullis
- Centre for Biometrics and Data Science for Sustainable Primary Industries, University of Wollongong, Wollongong, NSW, Australia
| | - Tim Sutton
- South Australian Research and Development Institute, Adelaide, SA, Australia
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Kristy Hobson
- Tamworth Agricultural Institute, New South Wales Department of Primary Industries, Tamworth, NSW, Australia
| |
Collapse
|