1
|
Hastwell AH, Chu X, Liu Y, Ferguson BJ. The parallel narrative of RGF/GLV/CLEL peptide signalling. TRENDS IN PLANT SCIENCE 2024; 29:1342-1355. [PMID: 39322488 DOI: 10.1016/j.tplants.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
Plant peptide families share distinct characteristics, and many members are in homologous signalling pathways controlling development and responses to external signals. The root meristem growth factor (RGF) peptides/GOLVEN (GLV)/CLAVATA3-ESR-related like (CLEL) are a family of short signalling peptides that are derived from a precursor protein and undergo post-translational modifications. Their role in root meristem development is well established and recent efforts have identified subtilase processing pathways and several downstream signalling components. This discovery has enabled the convergence of previously distinct pathways and enhanced our understanding of plant developmental processes. Here, we review the structure-function relationship of RGF peptides, the post-translational modification pathways, and the downstream signalling mechanisms and highlight components of these pathways that are known in non-RGF-mediated pathways.
Collapse
Affiliation(s)
- April H Hastwell
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| | - Xitong Chu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhan Liu
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Brett J Ferguson
- Integrative Legume Research Group, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
2
|
Yan W, Ni Y, Zhao H, Liu X, Jia M, Zhao X, Li Y, Miao H, Liu H, Zhang H. Comprehensive analysis of sesame LRR-RLKs: structure, evolution and dynamic expression profiles under Macrophomina phaseolina stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1334189. [PMID: 38410728 PMCID: PMC10895033 DOI: 10.3389/fpls.2024.1334189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024]
Abstract
Leucine-rich repeat receptor-like kinases (LRR-RLKs) can participate in the regulation of plant growth and development, immunity and signal transduction. Sesamum indicum, one of the most important oil crops, has a significant role in promoting human health. In this study, 175 SiLRR-RLK genes were identified in S. indicum, and they were subdivided into 12 subfamilies by phylogenetic analysis. Gene duplication analysis showed that the expansion of the SiLRR-RLK family members in the sesame was mainly due to segmental duplication. Moreover, the gene expansion of subfamilies IV and III contributed to the perception of stimuli under M. phaseolina stress in the sesame. The collinearity analysis with other plant species revealed that the duplication of SiLRR-RLK genes occurred after the differentiation of dicotyledons and monocotyledons. The expression profile analysis and functional annotation of SiLRR-RLK genes indicated that they play a vital role in biotic stress. Furthermore, the protein-protein interaction and coexpression networks suggested that SiLRR-RLKs contributed to sesame resistance to Macrophomina phaseolina by acting alone or as a polymer with other SiLRR-RLKs. In conclusion, the comprehensive analysis of the SiLRR-RLK gene family provided a framework for further functional studies on SiLRR-RLK genes.
Collapse
Affiliation(s)
- Wenqing Yan
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Yunxia Ni
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Hui Zhao
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Xintao Liu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Min Jia
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Xinbei Zhao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Yongdong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
| | - Hongmei Miao
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Hongyan Liu
- The Shennong Laboratory, Zhengzhou, Henan, China
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Haiyang Zhang
- The Shennong Laboratory, Zhengzhou, Henan, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Liu R, Zhu M, Shi Y, Li J, Gong J, Xiao X, Chen Q, Yuan Y, Gong W. QTL Verification and Candidate Gene Screening of Fiber Quality and Lint Percentage in the Secondary Segregating Population of Gossypium hirsutum. PLANTS (BASEL, SWITZERLAND) 2023; 12:3737. [PMID: 37960093 PMCID: PMC10650182 DOI: 10.3390/plants12213737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Fiber quality traits, especially fiber strength, length, and micronaire (FS, FL, and FM), have been recognized as critical fiber attributes in the textile industry, while the lint percentage (LP) was an important indicator to evaluate the cotton lint yield. So far, the genetic mechanism behind the formation of these traits is still unclear. Quantitative trait loci (QTL) identification and candidate gene validation provide an effective methodology to uncover the genetic and molecular basis of FL, FS, FM, and LP. A previous study identified three important QTL/QTL cluster loci, harboring at least one of the above traits on chromosomes A01, A07, and D12 via a recombinant inbred line (RIL) population derived from a cross of Lumianyan28 (L28) × Xinluzao24 (X24). A secondary segregating population (F2) was developed from a cross between L28 and an RIL, RIL40 (L28 × RIL40). Based on the population, genetic linkage maps of the previous QTL cluster intervals on A01 (6.70-10.15 Mb), A07 (85.48-93.43 Mb), and D12 (0.40-1.43 Mb) were constructed, which span 12.25, 15.90, and 5.56 cM, with 2, 14, and 4 simple sequence repeat (SSR) and insertion/deletion (Indel) markers, respectively. QTLs of FL, FS, FM, and LP on these three intervals were verified by composite interval mapping (CIM) using WinQTL Cartographer 2.5 software via phenotyping of F2 and its derived F2:3 populations. The results validated the previous primary QTL identification of FL, FS, FM, and LP. Analysis of the RNA-seq data of the developing fibers of L28 and RIL40 at 10, 20, and 30 days post anthesis (DPA) identified seven differentially expressed genes (DEGs) as potential candidate genes. qRT-PCR verified that five of them were consistent with the RNA-seq result. These genes may be involved in regulating fiber development, leading to the formation of FL, FS, FM, and LP. This study provides an experimental foundation for further exploration of these functional genes to dissect the genetic mechanism of cotton fiber development.
Collapse
Affiliation(s)
- Ruixian Liu
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Minghui Zhu
- Agricultural Technology Extension Center of Kashi District, Kashi 844000, China;
| | - Yongqiang Shi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Junwen Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Juwu Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Xianghui Xiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| | - Quanjia Chen
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
| | - Youlu Yuan
- Engineering Research Centre of Cotton, Ministry of Education, College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi 830052, China;
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450001, China
| | - Wankui Gong
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China (J.G.); (X.X.)
| |
Collapse
|
4
|
Kulkarni CC, Cholin SS, Bajpai AK, Ondrasek G, Mesta RK, Rathod S, Patil HB. Comparative Root Transcriptome Profiling and Gene Regulatory Network Analysis between Eastern and Western Carrot ( Daucus carota L.) Cultivars Reveals Candidate Genes for Vascular Tissue Patterning. PLANTS (BASEL, SWITZERLAND) 2023; 12:3449. [PMID: 37836190 PMCID: PMC10575051 DOI: 10.3390/plants12193449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Carrot (Daucus carota L.) is a highly consumed vegetable rich in carotenoids, known for their potent antioxidant, anti-inflammatory, and immune-protecting properties. While genetic and molecular studies have largely focused on wild and Western carrot cultivars (cvs), little is known about the evolutionary interactions between closely related Eastern and Western cvs. In this study, we conducted comparative transcriptome profiling of root tissues from Eastern (UHSBC-23-1) and Western (UHSBC-100) carrot cv. to better understand differentially expressed genes (DEGs) associated with storage root development and vascular cambium (VC) tissue patterning. Through reference-guided TopHat mapping, we achieved an average mapping rate of 73.87% and identified a total of 3544 DEGs (p < 0.05). Functional annotation and gene ontology classification revealed 97 functional categories, including 33 biological processes, 19 cellular components, 45 metabolic processes, and 26 KEGG pathways. Notably, Eastern cv. exhibited enrichment in cell wall, plant-pathogen interaction, and signal transduction terms, while Western cv. showed dominance in photosynthesis, metabolic process, and carbon metabolism terms. Moreover, constructed gene regulatory network (GRN) for both cvs. obtained orthologs with 1222 VC-responsive genes of Arabidopsis thaliana. In Western cv, GRN revealed VC-responsive gene clusters primarily associated with photosynthetic processes and carbon metabolism. In contrast, Eastern cv. exhibited a higher number of stress-responsive genes, and transcription factors (e.g., MYB15, WRKY46, AP2/ERF TF connected via signaling pathways with NAC036) were identified as master regulators of xylem vessel differentiation and secondary cell wall thickening. By elucidating the comparative transcriptome profiles of Eastern and Western cvs. for the first time, our study provides valuable insights into the differentially expressed genes involved in root development and VC tissue patterning. The identification of key regulatory genes and their roles in these processes represents a significant advancement in our understanding of the evolutionary relations and molecular mechanisms underlying secondary growth of carrot and regulation by vascular cambium.
Collapse
Affiliation(s)
- Chaitra C. Kulkarni
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- Kittur Rani Chennamma College of Horticulture, Arabhavi, Gokak 591218, Belgaum Dt., Karnataka, India
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Sarvamangala S. Cholin
- Plant Molecular Biology Lab (DBT-BIOCARe), Department of Biotechnology & Crop Improvement, College of Horticulture, University of Horticultural Sciences, Bagalkot 587103, Karnataka, India;
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Akhilesh K. Bajpai
- Shodhaka Life Sciences Pvt. Ltd., Electronic City, Phase-I, Bengaluru 560100, Karnataka, India
| | - Gabrijel Ondrasek
- Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
| | - R. K. Mesta
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| | - Santosha Rathod
- Indian Institute of Rice Research, Hyderabad 500030, Telangana, India
| | - H. B. Patil
- University of Horticultural Sciences, Bagalkot 587103, Karnataka, India
| |
Collapse
|
5
|
Guo Z, Wang H, Yao J, Cheng Y, Zhang W, Xu Z, Li M, Huang J, Zhao M. Quantitative Trait Loci Mapping Analysis for Cold Tolerance Under Cold Stress and Brassinosteroid-Combined Cold Treatment at Germination and Bud Burst Stages in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:938339. [PMID: 35923884 PMCID: PMC9340073 DOI: 10.3389/fpls.2022.938339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Low temperature is one of the major abiotic stresses limiting seed germination and early seedling growth in rice. Brassinosteroid (BR) application can improve cold tolerance in rice. However, the regulatory relationship between cold tolerance and BR in rice remains undefined. Here, we constructed a population of 140 backcross recombinant inbred lines (BRILs) derived from a cross between a wild rice (Dongxiang wild rice, DXWR) and a super rice (SN265). The low-temperature germination rate (LTG), survival rate (SR), plant height (PH), and first leaf length (FLL) were used as indices for assessing cold tolerance under cold stress and BR-combined cold treatment at seed germination and bud burst stages. A high-resolution SNP genetic map, covering 1,145 bin markers with a distance of 3188.33 cM onto 12 chromosomes, was constructed using the GBS technique. A total of 73 QTLs were detected, of which 49 QTLs were identified under cold stress and 24 QTLs under BR-combined cold treatment. Among these, intervals of 30 QTLs were pairwise coincident under cold stress and BR-combined cold treatment, as well as different traits including SR and FLL, and PH and FLL, respectively. A total of 14 candidate genes related to cold tolerance or the BR signaling pathway, such as CBF/DREB (LOC_Os08g43200), bHLH (LOC_Os07g08440 and LOC_Os07g08440), WRKY (LOC_Os06g30860), MYB (LOC_Os01g62410 and LOC_Os05g51160), and BRI1-associated receptor kinase 1 precursor (LOC_Os06g16300), were located. Among these, the transcript levels of 10 candidate genes were identified under cold stress and BR-combined cold treatment by qRT-PCR. These findings provided an important basis for further mining the genes related to cold tolerance or the BR signaling pathway and understanding the molecular mechanisms of cold tolerance in rice.
Collapse
Affiliation(s)
- Zhifu Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Haotian Wang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Jialu Yao
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Yishan Cheng
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Wenzhong Zhang
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhengjin Xu
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Maomao Li
- Rice Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Jing Huang
- Department of Agronomy, College of Agriculture, Purdue University, West Lafayette, IN, United States
| | - Minghui Zhao
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|