1
|
Solakis-Tena A, Hidalgo-Triana N, Boynton R, Thorne JH. Phenological Shifts Since 1830 in 29 Native Plant Species of California and Their Responses to Historical Climate Change. PLANTS (BASEL, SWITZERLAND) 2025; 14:843. [PMID: 40265755 PMCID: PMC11945038 DOI: 10.3390/plants14060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
Climate change is affecting Mediterranean climate regions, such as California. Retrospective phenological studies are a useful tool to track biological response to these impacts through the use of herbarium-preserved specimens. We used data from more than 12,000 herbarium specimens of 29 dominant native plant species that are characteristic of 12 broadly distributed vegetation types to investigate phenological patterns in response to climate change. We analyzed the trends of four phenophases: preflowering (FBF), flowering (F), fruiting (FS) and growth (DVG), over time (from 1830 to 2023) and through changes in climate variables (from 1896 to 2023). We also examined these trends within California's 10 ecoregions. Among the four phenophases, the strongest response was found in the timing of flowering, which showed an advance in 28 species. Furthermore, 21 species showed sequencing in the advance of two or more phenophases. We highlight the advances found over temperature variables: 10 in FBF, 28 in F, 17 in FS and 18 in DVG. Diverse and less-consistent results were found for water-related variables with 15 species advancing and 11 delaying various phenophases in response to decreasing precipitation and increasing evapotranspiration. Jepson ecoregions displayed a more pronounced advance in F related to time and mean annual temperature in the three of the southern regions compared to the northern ones. This study underscores the role of temperature in driving phenological change, demonstrating how rising temperatures have predominantly advanced phenophase timing. These findings highlight potential threats, including risks of climatic, ecological, and biological imbalances.
Collapse
Affiliation(s)
- Andros Solakis-Tena
- Department of Botany and Plant Physiology (Botany Area), Faculty of Science, University of Málaga, 29010 Málaga, Spain;
| | - Noelia Hidalgo-Triana
- Department of Botany and Plant Physiology (Botany Area), Faculty of Science, University of Málaga, 29010 Málaga, Spain;
| | - Ryan Boynton
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA; (R.B.); (J.H.T.)
| | - James H. Thorne
- Department of Environmental Science and Policy, University of California, Davis, CA 95616, USA; (R.B.); (J.H.T.)
| |
Collapse
|
2
|
Liu W, Fan R, Yang S, Chen S, Huang Y, Ji W. Carex parva and Carex scabrirostris adopt diverse response strategies to adapt to low-light conditions. FRONTIERS IN PLANT SCIENCE 2024; 15:1432539. [PMID: 39469055 PMCID: PMC11513331 DOI: 10.3389/fpls.2024.1432539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Introduction In recent years, the visible light intensity of lawns has significantly decreased due to obstructions caused by urban shading objects. Carex has a competitive advantage over other turfgrass in low-light conditions and extensive management. Therefore, exploring their survival strategy in low-light environments is of great significance. Methods This study focuses on two species of Carex, Carex parva and Carex scabrirostris, and investigates their response to low-light conditions (150 μmol/m2/s) by simulating urban lawn conditions. Biomass allocation characteristics, leaf anatomical features, biochemical parameters, root morphology and photosynthetic parameters were measured. Results (a) Peroxidase activity, specific leaf area, and relative water content are key factors influencing the photosynthetic capacity of the two Carex species. (b) Under low-light conditions, photosynthetic parameters, leaf physiological indicators, and biomass allocation of the two Carex species were significantly affected (p<0.05). Both Carex species increased their investment in leaf biomass, maintained lateral root growth, and cleared reactive oxygen species to maintain their physiological balance. (c) In the simulated urban low-light environment, neither C. parva nor C. scabrirostris produced dauciform roots. Discussion In terms of response strategies, C. scabrirostris is a high-photosynthesis investing species with high productivity under low-light conditions, whereas C. parva exhibits minimal response, indicating a slow investment. C. scabrirostris has greater potential for application in low-light environments compared to C. parva. These results provide a theoretical basis for the cultivation and application of these two Carex species, as well as the expansion of turfgrass germplasm resources.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenli Ji
- College of Landscape Architecture and Art, Northwest A&F University, Xianyang, China
| |
Collapse
|
3
|
Tüfekcioğlu İ, Tavşanoğlu Ç. Growth form, regeneration mode, and vegetation type explain leaf trait variability at the species and community levels in Mediterranean woody vegetation. Ecol Evol 2024; 14:e11145. [PMID: 38469041 PMCID: PMC10927360 DOI: 10.1002/ece3.11145] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/13/2024] Open
Abstract
Leaf traits are good indicators of ecosystem functioning and plant adaptations to environmental conditions. We examined whether leaf trait variability at species and community levels in Mediterranean woody vegetation is explained by growth form, regeneration mode, and vegetation type. We studied several plant communities across five vegetation types - semi-closed forest, open forest, closed shrubland, open shrubland, and scrubland - in southwestern Anatolia, Türkiye. Using linear mixed models, community-weighted trait means, and principal component analysis, we tested how much variability in three leaf traits (specific leaf area, leaf thickness, and leaf area) is accounted for species, growth form, regeneration mode, and vegetation type. Despite a large amount of leaf trait variability both within- and among-species existed, functional groups still accounted for a significant part of this variability. Resprouters had higher SLA and leaf area and lower leaf thickness than non-resprouters. However, further functional separation in regeneration mode, by considering the propagule-persistence trait and the seed bank locality, explained leaf trait variability better than only resprouting ability. Although no consistent pattern was observed in three leaf traits in the growth form, we found evidence for the difference in SLA and leaf thickness between shrubs and large shrubs, and subshrubs had smaller leaves than other growth forms. Vegetation type also accounted for a substantial amount of leaf trait variability. Specifically, plant communities in closed habitats had larger leaf area than open ones, and those in scrublands had higher SLA, lower leaf thickness, and lower leaf area than other vegetation types. Climate and phylogeny had limited contribution to the results obtained, with the exception of a significant phylogenetic effect in explaining the differences in SLA between resprouters and non-resprouters. Our results suggest that multiple drivers are responsible for shaping plant trait variability in Mediterranean plant communities, including growth form, regeneration mode, and vegetation type.
Collapse
Affiliation(s)
- İrem Tüfekcioğlu
- Institute of ScienceHacettepe UniversityAnkaraTurkey
- Division of Ecology, Department of BiologyHacettepe UniversityAnkaraTurkey
| | - Çağatay Tavşanoğlu
- Division of Ecology, Department of BiologyHacettepe UniversityAnkaraTurkey
| |
Collapse
|
4
|
Jiang S, Tang Y, Fan R, Bai S, Wang X, Huang Y, Li W, Ji W. Response of Carex breviculmis to phosphorus deficiency and drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1203924. [PMID: 37496859 PMCID: PMC10366378 DOI: 10.3389/fpls.2023.1203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Introduction The drought and phosphorus deficiency have inevitably become environmental issues globally in the future. The analysis of plants functional trait variation and response strategies under the stress of phosphorus deficiency and drought is important to explore their ability to respond to potential ecological stress. Methods In this study, Carex breviculmis was selected as the research object, and a 14-week pot experiment was conducted in a greenhouse, with two phosphorus treatment (add 0.5mmol/L or 0.05μmol/L phosphorus) and four drought treatment (add 0-5%PEG6000), totaling eight treatments. Biomass allocation characteristics, leaf anatomical characteristics, biochemical parameters, root morphology, chemical element content, and photosynthetic parameters were measured. Results The results showed that the anatomical characteristics, chemical elements, and photosynthetic parameters of Carex breviculmis responded more significantly to main effect of phosphorus deficiency. Stomatal width, leaf phosphorus content and maximum net photosynthetic rate decreased by 11.38%, 59.39%, 38.18% significantly (p<0.05), while the change in biomass was not significant (p>0.05). Biomass allocation characteristics and root morphology responded more significantly to main effect of drought. Severe drought significantly decreased leaf fresh weight by 61% and increased root shoot ratio by 223.3% compared to the control group (p<0.05). The combined effect of severe drought and phosphorus deficiency produced the highest leaf N/P ratio (291.1% of the control) and MDA concentration (243.6% of the control). Correlation analysis and redundancy analysis showed that the contributions of phosphorus and drought to functional trait variation were similar. Lower epidermal cell thickness was positively correlated with maximum net photosynthetic rate, leaf phosphorus, chlorophyll ab, and leaf fresh weight (p<0.05). Discussion In terms of response strategy, Carex breviculmis was affected at the microscopic level under phosphorus deficiency stress, but could maintain the aboveground and underground biomass well through a series of mechanisms. When affected by drought, it adopted the strategy of reducing leaf yield and improving root efficiency to maintain life activities. Carex breviculmis could maintain its traits well under low phosphorus and moderate drought, or better conditions. So it may have good ecological service potential in corresponding areas if promoted. This study also provided a reference for plant response to combined drought and phosphorus deficiency stresses.
Collapse
Affiliation(s)
- Songlin Jiang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yiqing Tang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Rong Fan
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Shidong Bai
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Xiaoqi Wang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yulin Huang
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Weizhong Li
- College of Forestry, Northwest A&F University, Yangling, China
| | - Wenli Ji
- College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Wang H, Yang J, Xie T, Ma L, Niu F, He C, Shan L. Variation and association of leaf traits for desert plants in the arid area, northwest China. Ecol Evol 2023; 13:e9946. [PMID: 36969926 PMCID: PMC10037433 DOI: 10.1002/ece3.9946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023] Open
Abstract
Characterizing variation and association of plant traits is critical for understanding plant adaptation strategies and community assembly mechanisms. However, little is known about the leaf trait variations of desert plants and their association with different life forms. We used principal component analysis, Pearson's correlation, phylogenetic independent contrasts, linear mixed model, and variance decomposition to explore the variation and association of 10 leaf traits in 22 desert plants in the arid area of northwest China. We found that: (1) the contribution of interspecific variation to the overall variation was greater than the intraspecific variation of all the studied leaf traits; (2) intraspecific and interspecific variation in leaf traits differed among life forms. Some leaf traits, such as tissue density of shrubs and specific leaf area of herbs, exhibited greater intraspecific than interspecific variation, while other traits exhibited the inverse; (3) desert shrubs corroborate the leaf economic spectrum hypothesis and had a fast acquisitive resource strategy, but herbs may not conform to this hypothesis; (4) there were trade‐offs between leaf traits, which were mediated by phylogeny. Overall, our results suggest that interspecific variation of leaf traits significantly contributes to the total leaf traits variation in desert plants. However, intraspecific variation should not be overlooked. There are contrasts in the resource acquisition strategies between plants life forms. Our results support understanding of the mechanisms underlying community assembly in arid regions and suggest that future works may focus on the variation and association of plant traits at both intra‐ and interspecific scales.
Collapse
Affiliation(s)
- Hongyong Wang
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Jie Yang
- Pingliang institute of soil and water conservation SciencePingliangChina
| | - Tingting Xie
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Li Ma
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Furong Niu
- College of ForestryGansu Agricultural UniversityLanzhouChina
| | - Cai He
- Wuwei Academy of ForestryWuweiChina
| | - Lishan Shan
- College of ForestryGansu Agricultural UniversityLanzhouChina
| |
Collapse
|
6
|
Hidalgo-Triana N, Pérez-Latorre AV, Adomou AC, Rudner M, Thorne JH. Adaptations to the stressful combination of serpentine soils and Mediterranean climate drive plant functional groups and trait richness. FRONTIERS IN PLANT SCIENCE 2023; 14:1040839. [PMID: 36993858 PMCID: PMC10040603 DOI: 10.3389/fpls.2023.1040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Plant functional traits (FTs) are important for understanding plant ecological strategies (e.g., drought avoidance), especially in the nutrient-poor soils of serpentine ecosystems. In the Mediterranean areas, such ecosystems are characterized by climatic factors (e.g., summer drought) that exert a filtering effect. MATERIAL AND METHODS In our study, we analyzed 24 species with varying serpentine affinity, from strictly serpentine plants to generalist plants, from two ultramafic shrublands in southern Spain, considering four FTs: plant height (H), leaf area (LA), specific leaf area (SLA), and stem specific density (SSD). Additionally, we also identified the species' dominant strategies to avoid drought and those strategies' relationship to serpentine affinity. We used principal component analysis to identify combinations of FTs, and cluster analysis to define Functional Groups (FGs). RESULTS AND DISCUSSION We defined eight FGs, which suggests that such Mediterranean serpentine shrublands are composed of species with wide-ranging of FTs. Indicator traits explained 67-72% of the variability based on four strategies: (1) lower H than in other Mediterranean ecosystems; (2) middling SSD; (3) low LA; and (4) low SLA due to thick and/or dense leaves, which contribute to long leaf survival, nutrient retention, and protection from desiccation and herbivory. Generalist plants had higher SLA than obligate serpentine plants, whereas the obligate serpentine plants showed more drought avoidance mechanisms than the generalists. Although most plant species inhabiting Mediterranean serpentine ecosystems have shown similar ecological adaptations in response to the Mediterranean environment, our results suggest that serpentine obligate plant species could present greater resilience to climate change. Given greater number and more pronounced drought avoidance mechanisms in these species compared with generalists, and the high number of FGs identified, the serpentine plants have shown adaptation to severe drought.
Collapse
Affiliation(s)
| | | | | | - Michael Rudner
- Faculty of Environmental Engineering, Weihenstephan-Triesdorf University of Applied Sciences, Weidenbach, Germany
| | - James H. Thorne
- Department of Environmental Science and Policy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Calheiros-Nogueira B, Aguiar C, Villa M. Plant Functional Dispersion, Vulnerability and Originality Increase Arthropod Functions from a Protected Mountain Mediterranean Area in Spring. PLANTS (BASEL, SWITZERLAND) 2023; 12:889. [PMID: 36840238 PMCID: PMC9960503 DOI: 10.3390/plants12040889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Plant diversity often contributes to the shape of arthropod communities, which in turn supply important ecosystem services. However, the current biodiversity loss scenario, particularly worrying for arthropods, constitutes a threat for sustainability. From a trait-based ecology approach, our goal was to evaluate the bottom-up relationships to obtain a better understanding of the conservation of the arthropod function within the ecosystem. Specifically, we aim: (i) to describe the plant taxonomic and functional diversity in spring within relevant habitats of a natural protected area from the Mediterranean basin; and (ii) to evaluate the response of the arthropod functional community to plants. Plants and arthropods were sampled and identified, taxonomic and functional indices calculated, and the plant-arthropod relationships analyzed. Generally, oak forests and scrublands showed a higher plant functional diversity while the plant taxonomic richness was higher in grasslands and chestnut orchards. The abundance of arthropod functional groups increased with the plant taxonomic diversity, functional dispersion, vulnerability and originality, suggesting that single traits (e.g., flower shape or color) may be more relevant for the arthropod function. Results indicate the functional vulnerability of seminatural habitats, the relevance of grasslands and chestnut orchards for arthropod functions and pave the way for further studies about plant-arthropod interactions from a trait-based ecology approach.
Collapse
Affiliation(s)
- Bruno Calheiros-Nogueira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carlos Aguiar
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - María Villa
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório para a Sustentabilidade e Tecnologia em Regiões de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|