1
|
Zhang B, Koski TM, Wang H, Chen Z, Li H, Mogouong J, Bushley KE, Xing L, Sun J. The Role of Phenylpropanoids and the Plant Microbiome in Defences of Ash Trees Against Invasive Emerald Ash Borer. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40231438 DOI: 10.1111/pce.15534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/03/2025] [Accepted: 03/25/2025] [Indexed: 04/16/2025]
Abstract
Plants have coevolved with herbivorous insects for millions of years, resulting in variation in resistance both within and between species. Using a manipulative experiment combined with untargeted metabolomics, microbiome sequencing and transcriptomics approaches, we investigated the roles of plant metabolites and the microbiome in defence mechanisms in native resistant Manchurian ash (Fraxinus mandshurica) trees and non-native susceptible velvet ash (Fraxinus velutina) trees against the highly invasive emerald ash borer (EAB, Agrilus planipennis). Comparative transcriptomics and metabolomics analyses show that the phenylpropanoid pathway, which is enriched in differentially expressed genes and differentially abundant metabolites, may serve as a potential regulator of resistance. Additionally, the microbiome is distinctly shifted in two ash species. Indicator taxa analysis reveals that the distinct genera are dominant in the galleries of two ash species, for example, Pseudomonas in velvet, and Hafnia-Obesumbacterium in Manchurian. The strong correlation between indicator taxa and metabolites suggests that the chemical compounds might impact the microbial community in phloem directly or indirectly, or vice versa. This study significantly enhances our understanding of the variation in resistance between ash species and its contribution to the invasion success of EAB, providing valuable insights for the development of pest management strategies.
Collapse
Affiliation(s)
- Bin Zhang
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Department of Biology, University of Turku, Turku, Finland
| | - Hualing Wang
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Zhenzhu Chen
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Huiping Li
- Key Laboratory of Forest Germplasm Resources and Forest Protection of Hebei Province, Forestry College of Hebei Agricultural University, Baoding, China
| | - Judith Mogouong
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, USA
| | | | - Longsheng Xing
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions/College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
2
|
Farias KS, Ferreira MM, De Oliveira IB, Dalio RJD, Pirovani CP. The BASIDIN effector of the fungus Moniliophthora perniciosa promotes positive effects on the seed germination and seedlings development of Lactuca sativa. FRONTIERS IN PLANT SCIENCE 2025; 16:1529096. [PMID: 39949413 PMCID: PMC11821917 DOI: 10.3389/fpls.2025.1529096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025]
Abstract
Plant resistance inducers that activate plant defense mechanisms may be useful in reducing agrotoxic use. Lettuce is among the most economically important leafy vegetable crops in the world. Since lettuce propagates through seeds, the use of high-quality seeds is extremely important for establishing the crop. Several studies have demonstrated the potential of alternative methods of seed treatment with the aim of increasing productivity. Based on this premise, we tested the effect of the rBASIDIN effector regarding its ability to induce germination and physiological changes in lettuce seedlings through seed treatment. The seeds were treated for 30 min by soaking with 50 µg mL-1, 75 µg mL-1 and 100 µg mL-1 of the recombinant effector protein rBASIDIN. Seeds treated with distilled water and 10 mmol of Tris-HCl served as controls. The physiological parameters evaluated were germination percentage at 4 and 7 days, seedling length (aerial part and root), dry and fresh mass, electrical conductivity, and enzymatic activity. Seeds treated with 50 and 75 µg mL-1 of rBASIDIN germinated earlier than the controls. Treatment with rBASIDIN at a concentration of 50 µg mL-1 resulted in seedlings with an average root length of 1.51 cm, while the average lengths of the controls (H2O and buffer) were 0.86 and 0.70 cm respectively. Seed treatment with rBASIDIN caused an increase in the fresh and dry weight of the plants. The lowest electrolyte leakage was detected in seeds treated with the three concentrations of rBASIDIN compared to the controls. Regarding the activity of defense enzymes, seedlings treated with rBASIDIN at lower concentrations showed higher chitinase and β-glucanase activity compared to the controls. The results indicated that the rBASIDIN effector plays an important signaling role in lettuce seeds, since small doses are already sufficient to induce changes in physiological parameters to obtain more vigorous plants.
Collapse
Affiliation(s)
- Keilane Silva Farias
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Monaliza Macêdo Ferreira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ivina Barbosa De Oliveira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| | - Ronaldo José Durigan Dalio
- Centro de Citrucultura Sylvio Moreira, Laboratório de Biotecnologia, Instituto Agronômico, Cordeirópolis, São Paulo. IdeeLab Biotecnologia, Piracicaba, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Brazil
| |
Collapse
|
3
|
Hasan MS, Lin CJ, Marhavy P, Kyndt T, Siddique S. Redox signalling in plant-nematode interactions: Insights into molecular crosstalk and defense mechanisms. PLANT, CELL & ENVIRONMENT 2024; 47:2811-2820. [PMID: 38679939 DOI: 10.1111/pce.14925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Plant-parasitic nematodes, specifically cyst nematodes (CNs) and root-knot nematodes (RKNs), pose significant threats to global agriculture, leading to substantial crop losses. Both CNs and RKNs induce permanent feeding sites in the root of their host plants, which then serve as their only source of nutrients throughout their lifecycle. Plants deploy reactive oxygen species (ROS) as a primary defense mechanism against nematode invasion. Notably, both CNs and RKNs have evolved sophisticated strategies to manipulate the host's redox environment to their advantage, with each employing distinct tactics to combat ROS. In this review, we have focused on the role of ROS and its scavenging network in interactions between host plants and CNs and RKNs. Overall, this review emphasizes the complex interplay between plant defense mechanism, redox signalling and nematode survival tactics, suggesting potential avenues for developing innovative nematode management strategies in agriculture.
Collapse
Affiliation(s)
- M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES-Molecular Phytomedicine, Bonn, Germany
| | - Ching-Jung Lin
- Department of Plant Pathology, University of California, Davis, California, USA
| | - Peter Marhavy
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Tina Kyndt
- Department Biotechnology, Research Group Epigenetics & Defence, Gent, Belgium
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, Davis, California, USA
| |
Collapse
|
4
|
Ahmed R, Kaldis A, Voloudakis A. Silencing of a Nicotiana benthamiana ascorbate oxidase gene reveals its involvement in resistance against cucumber mosaic virus. PLANTA 2024; 259:38. [PMID: 38227024 PMCID: PMC10791908 DOI: 10.1007/s00425-023-04313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024]
Abstract
MAIN CONCLUSION Silencing of an ascorbate oxidase (AO) gene in N. benthamiana enhanced disease severity from cucumber mosaic virus (CMV), showing higher accumulation and expansion of the spreading area of CMV. A Nicotiana benthamiana ascorbate oxidase (NbAO) gene was found to be induced upon cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was employed to elucidate the function of AO in N. benthamiana. The tobacco rattle virus (TRV)-mediated VIGS resulted in an efficient silencing of the NbAO gene, i.e., 97.5% and 78.8% in relative quantification as compared to the control groups (TRV::eGFP- and the mock-inoculated plants), respectively. In addition, AO enzymatic activity decreased in the TRV::NtAO-silenced plants as compared to control. TRV::NtAO-mediated NbAO silencing induced a greater reduction in plant height by 15.2% upon CMV infection. CMV titer at 3 dpi was increased in the systemic leaves of NbAO-silenced plants (a 35-fold change difference as compared to the TRV::eGFP-treated group). Interestingly, CMV and TRV titers vary in different parts of systemically infected N. benthamiana leaves. In TRV::eGFP-treated plants, CMV accumulated only at the top half of the leaf, whereas the bottom half of the leaf was "occupied" by TRV. In contrast, in the NbAO-silenced plants, CMV accumulated in both the top and the bottom half of the leaf, suggesting that the silencing of the NbAO gene resulted in the expansion of the spreading area of CMV. Our data suggest that the AO gene might function as a resistant factor against CMV infection in N. benthamiana.
Collapse
Affiliation(s)
- Reshma Ahmed
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, 11855, Athens, Greece.
| |
Collapse
|
5
|
Liu J, Lefevere H, Coussement L, Delaere I, De Meyer T, Demeestere K, Höfte M, Gershenzon J, Ullah C, Gheysen G. The phenylalanine ammonia-lyase inhibitor AIP induces rice defence against the root-knot nematode Meloidogyne graminicola. MOLECULAR PLANT PATHOLOGY 2024; 25:e13424. [PMID: 38279847 PMCID: PMC10817824 DOI: 10.1111/mpp.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/29/2024]
Abstract
The phenylalanine ammonia-lyase (PAL) enzyme catalyses the conversion of l-phenylalanine to trans-cinnamic acid. This conversion is the first step in phenylpropanoid biosynthesis in plants. The phenylpropanoid pathway produces diverse plant metabolites that play essential roles in various processes, including structural support and defence. Previous studies have shown that mutation of the PAL genes enhances disease susceptibility. Here, we investigated the functions of the rice PAL genes using 2-aminoindan-2-phosphonic acid (AIP), a strong competitive inhibitor of PAL enzymes. We show that the application of AIP can significantly reduce the PAL activity of rice crude protein extracts in vitro. However, when AIP was applied to intact rice plants, it reduced infection of the root-knot nematode Meloidogyne graminicola. RNA-seq showed that AIP treatment resulted in a rapid but transient upregulation of defence-related genes in roots. Moreover, targeted metabolomics demonstrated higher levels of jasmonates and antimicrobial flavonoids and diterpenoids accumulating after AIP treatment. Furthermore, chemical inhibition of the jasmonate pathway abolished the effect of AIP on nematode infection. Our results show that disturbance of the phenylpropanoid pathway by the PAL inhibitor AIP induces defence in rice against M. graminicola by activating jasmonate-mediated defence.
Collapse
Affiliation(s)
- Jing Liu
- Department of BiotechnologyGhent UniversityGhentBelgium
- College of Plant ProtectionHunan Agricultural UniversityChangshaChina
| | | | - Louis Coussement
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Ilse Delaere
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Tim De Meyer
- Department of Data Analysis and Mathematical ModellingGhent UniversityGhentBelgium
| | - Kristof Demeestere
- Department of Green Chemistry and TechnologyGhent UniversityGhentBelgium
| | - Monica Höfte
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Jonathan Gershenzon
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | - Chhana Ullah
- Department of BiochemistryMax Planck Institute for Chemical EcologyJenaGermany
| | | |
Collapse
|
6
|
Gupta S, Pandey S, Nandi SP, Singh M. Modulation of ethylene and ROS-scavenging enzymes by multifarious plant growth-promoting endophytes in tomato (Solanum lycopersicum) plants to combat Xanthomonas -induced stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107982. [PMID: 37651951 DOI: 10.1016/j.plaphy.2023.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/26/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
The purpose of the current study was to explore root endophytes- Priestia megaterium T3 and Bacillus cereus T4 from Moringa olefiera for the suppression of leaf spot disease in tomato plants challenged with Xanthomonas vesicatoria. Both strains had plant growth-stimulating characteristics including auxin production, solubilization of inorganic phosphate and zinc complexes, and production of ammonia, siderophore, as well as hydrolytic enzymes. An agar well diffusion and fluorescence viability assay have validated the antibacterial effect of the cell-free culture supernatant of strains T3 and T4. Liquid chromatography-mass spectrometry (LC-MS) profiling has identified the secondary metabolites in the cell-free supernatant of strains T3 and T4. The bio-priming of tomato seeds with a consortium of T3 and T4 strains has significantly declined ethylene (by 0.61-fold) and hydrogen peroxide (H2O2, 0.64-fold) concentration thus, maintaining a lower content of ROS-induced malondialdehyde (MDA, 0.91-fold) as compared to control counterparts. Consequently, the leaf spot disease severity was reduced by ∼70% in consortium-treated tomato plants in contrast to their pathogen-challenged control. The consortia (T3+T4) treatment has facilitated induced systemic resistance by enhancing enzymatic activities of phenylalanine ammonia-lyase (PAL), peroxidase (PO), polyphenol oxidase (PPO), catalase (CAT), and ascorbate oxidase (AO) to detoxify the excessive Xanthomonas-induced ROS accumulation in tomato plants. Conclusively, bacterial endophytes modulate X. vesicatoria-induced ROS response and ethylene levels in tomato plants. The current findings indicate that plant growth-promoting endophytic bacterial strains hold the potential to sustainably enhance plant growth and suppress bacterial leaf spot disease in tomato plants.
Collapse
Affiliation(s)
- Shikha Gupta
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Sangeeta Pandey
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India.
| | - Shoma Paul Nandi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, Uttar Pradesh, 201313, India
| | - Monika Singh
- G.L. Bajaj Institute of Technology and Management, Greater Noida, G.B Nagar, Uttar Pradesh, 201306, India
| |
Collapse
|
7
|
Yang Z, Zhi P, Chang C. Priming seeds for the future: Plant immune memory and application in crop protection. FRONTIERS IN PLANT SCIENCE 2022; 13:961840. [PMID: 35968080 PMCID: PMC9372760 DOI: 10.3389/fpls.2022.961840] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/13/2022] [Indexed: 05/12/2023]
Abstract
Plants have evolved adaptive strategies to cope with pathogen infections that seriously threaten plant viability and crop productivity. Upon the perception of invading pathogens, the plant immune system is primed, establishing an immune memory that allows primed plants to respond more efficiently to the upcoming pathogen attacks. Physiological, transcriptional, metabolic, and epigenetic changes are induced during defense priming, which is essential to the establishment and maintenance of plant immune memory. As an environmental-friendly technique in crop protection, seed priming could effectively induce plant immune memory. In this review, we highlighted the recent advances in the establishment and maintenance mechanisms of plant defense priming and the immune memory associated, and discussed strategies and challenges in exploiting seed priming on crops to enhance disease resistance.
Collapse
|