1
|
Luo C, Ding H, Yang S, Dong Y. Benzoxazinoid Induction and Secretion in Wheat by Intercropped Faba Bean: Cross-Plant Transfer, Environmental Degradation and Limited Negative Impact on Growth. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40421663 DOI: 10.1111/pce.15642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/20/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
Benzoxazinoids (BXs) synthesised by cereal plants are vital for stress resistance. However, information regarding the induction of specific BXs (DIBOA, DIMBOA, and MBOA) in wheat by typical cereal-legume intercropping systems, such as wheat/faba bean, and their effects on neighbouring intercropping crops, remains limited. To address this knowledge gap, pot and field planting experiments were conducted to examine the influence of intercropped faba bean (IF) on the synthesis and secretion of BXs in wheat, their subsequent absorption by faba bean, and their impact on plant growth. Results showed that under both planting conditions, IF could induce an increase in the concentration of BXs in the shoots (leaves and stems) and underground (roots) parts of intercropped wheat (IW), as well as in the rhizosphere soil (p < 0.05), with the highest concentration in the leaves, reaching up to 78.0 μg/g. The concentration of BXs in various organs of IW was higher under field conditions than under potted conditions, and showed a pattern of leaves > roots > stems > rhizosphere. DIMBOA, induced to synthesise and secrete in the wheat rhizosphere, underwent accelerated degradation and reduced half-life due to the soil environment, which is rich in diverse microorganisms and organic residues. In addition, compared to monoculture faba bean (MF) with trace levels of BXs, all three BXs types were detected in the rhizosphere, roots, and shoots of IF, and all significantly increased (p < 0.05). The BXs absorbed by IF exhibited varying degrees of negative correlation with the growth parameters of wheat and faba bean, but the negative impact on growth was limited. In summary, our research findings enhance the understanding of the secretion of BXs induced by legume crops in cereal-legume intercropping systems and their absorption in interspecific interactions among legume crops.
Collapse
Affiliation(s)
- Chaosheng Luo
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Huiqiong Ding
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Siyin Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
2
|
Liu N, Chen C, Wang B, Wang X, Zhang D, Zhou G. Exogenous regulation of macronutrients promotes the accumulation of alkaloid yield in anisodus tanguticus (Maxim.) pascher. BMC PLANT BIOLOGY 2024; 24:602. [PMID: 38926662 PMCID: PMC11201296 DOI: 10.1186/s12870-024-05299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Anisodus tanguticus (Maxim.) Pascher (A. tanguticus) is a valuable botanical for extracting tropane alkaloids, which are widely used in the pharmaceutical industry. Implementing appropriate cultivation methods can improve both the quality and yield of A. tanguticus. A two-year field experiment was conducted from 2021 to 2023 using a single-factor randomized complete block design replicated three times. The study examined the effects of different nutrient levels (nitrogen: 0, 75, 150, 225, 300, 375 kg/ha; phosphorus: 0, 600, 750, 900, 1050, 1200 kg/ha; potassium: 0, 75, 112.5, 150, 187.5, 225 kg/ha) on the growth, primary alkaloid contents, and alkaloid yield of A. tanguticus at different growth stages (S-Greening, S-Growing, S-Wilting; T-Greening, T-Growing, and T-Wilting) in both the roots and aboveground portions. RESULTS Our results demonstrate that nutrient levels significantly affect the growth and alkaloid accumulation in A. tanguticus. High nitrogen levels (375 kg/ha) notably increased both root and aboveground biomass, while phosphorus had a minimal effect, especially on aboveground biomass. For alkaloid content (scopolamine, anisodamine, anisodine, atropine), a moderate nitrogen level (225 kg/ha) was most effective, followed by low potassium (75 kg/ha), with phosphorus showing a limited impact. Increased phosphorus levels led to a decrease in scopolamine content. During the T-Growing period, moderate nitrogen addition (225 kg/ha) yielded the highest alkaloid levels per unit area (205.79 kg/ha). In the T-Wilting period, low potassium (75 kg/ha) and low phosphorus (750 kg/ha) resulted in alkaloid levels of 146.91 kg/ha and 142.18 kg/ha, respectively. This indicates nitrogen has the most substantial effect on alkaloid accumulation, followed by potassium and phosphorus. The Douglas production function analysis suggests focusing on root biomass and the accumulation of scopolamine and atropine in roots to maximize alkaloid yield in A. tanguticus cultivation. CONCLUSIONS Our findings show that the optimum harvesting period for A. tanguticus is the T-Wilting period, and that the optimal nitrogen addition is 225 kg/ha, the optimal potassium addition is 75 kg/ha, and the optimal phosphorus addition is 600 kg/ha or less.
Collapse
Affiliation(s)
- Na Liu
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Chen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, 235000, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Xiaoyun Wang
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China
| | - Dengshan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| | - Guoying Zhou
- Northwest Institute of Plateau Biology, CAS Key Laboratory of Tibetan Medicine Research, Xining, 810008, China.
| |
Collapse
|
3
|
Wang M, Wang Y, Wang X, Wei G, Yang H, Yang X, Shen T, Qu H, Fang S, Wu Z. Integrated physiological, biochemical, and transcriptomics analyses reveal the underlying mechanisms of high nitrogen use efficiency of black sesame. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108205. [PMID: 38035467 DOI: 10.1016/j.plaphy.2023.108205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/24/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Cultivating high nitrogen use efficient varieties is a sustainable solution to mitigating adverse effects on the environment caused by excessive nitrogen fertilizer application. However, in sesame, although immoderate nitrogen fertilizers are used to promote yield, the molecular basis of high nitrogen use efficiency (NUE) is largely unknown. Hence, this study aimed to identify high NUE black sesame variety and dissect the underlying physiological and molecular mechanisms. To achieve this, seventeen seedling traits of 30 black sesame varieties were evaluated under low nitrogen (LN) and high nitrogen (HN) conditions. Dry matter accumulation, root parameters, shoot nitrogen accumulation, and chlorophyll content are important factors for evaluating the NUE of sesame genotypes. The variety 17-156 was identified as the most efficient for N utilization. Comparative physiological and transcriptomics analyses revealed that 17-156 possesses a sophisticated nitrogen metabolizing machinery to uptake and assimilate higher quantities of inorganic nitrogen into amino acids and proteins, and simultaneously improving carbon metabolism and growth. Specifically, the total nitrogen and soluble protein contents significantly increased with the increase in nitrogen concentrations. Many important genes, including nitrate transporters (NPFs), amino acid metabolism-related (GS, GOGAT, GDH, etc.), phytohormone-related, and transcription factors, were significantly up-regulated in 17-156 under HN condition. In addition, 38 potential candidate genes were identified for future studies toward improving sesame's NUE. These findings offer valuable resources for deciphering the regulatory network of nitrogen metabolism and developing sesame cultivars with improved NUE.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Yupeng Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xiaohui Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Guangwei Wei
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huiyi Yang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Xi Yang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Tinghai Shen
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Huijie Qu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Sheng Fang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Ziming Wu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding, Ministry of Education/College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
4
|
Zhang M, Chen W, Jing M, Gao Y, Wang Z. Canopy Structure, Light Intensity, Temperature and Photosynthetic Performance of Winter Wheat under Different Irrigation Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3482. [PMID: 37836222 PMCID: PMC10575145 DOI: 10.3390/plants12193482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
A high-quality canopy architecture is central to obtaining high crop yields. A field experiment was carried out at the Wuqiao Experimental Station from 2015 to 2019 under four irrigation schemes (W0, no irrigation after sowing; W1, 75 mm irrigation at jointing stage; W2, 75 mm irrigation at jointing and anthesis stages, respectively; W3, 75 mm irrigation at tillering, jointing and anthesis stages, respectively) to investigate the canopy structure, canopy apparent photosynthesis (CAP), canopy temperature (CT), yield and water use efficiency (WUE). The results showed that increasing irrigation times improved the leaf area index (LAI), non-leaf area index (NLAI) and light interception (LI) of the spike and total canopy but decreased the canopy temperature (CT) after anthesis. The CAP in the W3 treatment was consistently lower than that in the W1 treatment, suggesting lower effective utilization of light energy under the W3 treatment. Increasing irrigation times improved wheat yield, but the W2 treatment had no significant difference in yield compared to the W3 treatment. In addition, the W1 and W2 treatments had higher WUEs. The CT, organ temperature and LI were closely positively associated with each other, but they were all strongly negatively related to the yield. Overall, the W2 treatment was the best irrigation scheme for constructing a reasonable canopy architecture for winter wheat, obtaining more efficient water use and yield in the North China Plain (NCP). CT and organ temperature can be used as proxy parameters to estimate the canopy structure.
Collapse
Affiliation(s)
- Meng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.Z.)
| | - Weiwei Chen
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.Z.)
| | - Maoya Jing
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.Z.)
| | - Yanmei Gao
- School of Life Science, Shanxi Normal University, Taiyuan 030031, China; (M.Z.)
| | - Zhimin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
5
|
Ma G, Zheng Y, Zhang J, Guo Z, Dong Y. Changes in canopy microclimate of faba bean under intercropping at controlled nitrogen levels and their correlation with crop yield. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4489-4502. [PMID: 36856259 DOI: 10.1002/jsfa.12533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The relationship between the microclimate of the intercropping faba bean canopy and yield, and its response to nitrogen application, was studied in the crop canopy to clarify that intercropping and nitrogen application changed the microclimate of the faba bean canopy and affected the yield. RESULTS In field experiments in Eshan and Xundian, the growth index, light transmittance, interception rate of photosynthetic effective radiation, temperature, relative humidity, and yield of the faba bean were determined using three planting methods (wheat monoculture, faba bean monoculture, and wheat-faba bean intercropping) and four nitrogen application levels, N0 (0 kg/hm2 ), N1 (45 kg/hm2 ), N2 (90 kg/hm2 ), and N3 (180 kg/hm2 ). The results showed that the application of nitrogen improved the growth index of monoculture and intercropping broad beans significantly, reduced the canopy light transmittance and temperature significantly, and increased the interception rate and relative humidity of photosynthetic effective radiation significantly. Compared with N0, the yield of broad bean in both places was the highest in N1, which increased by 14% (Eshan) and 15% (Xundian). CONCLUSION Multiple linear stepwise regression and path analysis showed that the decrease in canopy light transmittance during the faba bean pod-setting stage and the interception rate of photosynthetic effective radiation during pod-bulging stage, caused by excessive nitrogen application, were the main climatic and ecological factors limiting the increase in the intercropping faba bean yield in Eshan and Xundian respectively. The optimum nitrogen application rate recommended in production is 45 kg/hm2 , to reduce the nitrogen application rate and maximize the productivity of the wheat and faba bean system. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guanglei Ma
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yiran Zheng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jing Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Zengpeng Guo
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
6
|
Chen K, Ma L, Chen C, Liu N, Wang B, Bao Y, Liu Z, Zhou G. Long-Term Impact of N, P, K Fertilizers in Different Rates on Yield and Quality of Anisodus tanguticus (Maxinowicz) Pascher. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112102. [PMID: 37299083 DOI: 10.3390/plants12112102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023]
Abstract
Anisodus tanguticus (Maxinowicz) Pascher (Solanaceae) is a traditional Chinese herb that is widely used in folklore and clinical practice. In recent years, wild populations have been severely impacted to the point of extinction due to over-harvesting and reclamation. Therefore, artificial cultivation is important to relieve the pressure of market demand and protect wild plant resources. Using a "3414" fertilization design, i.e., 3 factors (N, P, and K), 4 levels, and 14 fertilization treatments, with 3 replicates and a total of 42 experimental plots, A. tanguticus was harvested in October 2020, June 2021, August 2021, and October 2021, and the yield and alkaloid content were determined. The study aimed to provide a theoretical basis and technical reference for the standardization of A. tanguticus cultivation. Biomass accumulation and alkaloid content showed a trend of increasing and then decreasing with the application of nitrogen, phosphorus, and potassium, and the biomass accumulation was the highest at the application levels of nitrogen and phosphorus in T6 and T9 and at the application levels of medium and low potassium. The alkaloid content showed an increasing trend between October of the first year and June of the second year and a decreasing trend in the second year with the increase in the harvesting period. Yield and alkaloid yield showed a decreasing trend between October of the first year and June of the second year and an increasing trend in the second year with the increase in the harvesting period. The recommended application rates are 225-300 kg/ha2 for nitrogen, 850-960 kg/ha2 for phosphorus, and 65-85 kg/ha2 for potassium.
Collapse
Affiliation(s)
- Kaiyang Chen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Ma
- Qinghai Research and of Environmental Sciences, Xining 810008, China
| | - Chen Chen
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Bo Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Bao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Zhengrong Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Guoying Zhou
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Gaspareto RN, Jalal A, Ito WCN, Oliveira CEDS, Garcia CMDP, Boleta EHM, Rosa PAL, Galindo FS, Buzetti S, Ghaley BB, Filho MCMT. Inoculation with Plant Growth-Promoting Bacteria and Nitrogen Doses Improves Wheat Productivity and Nitrogen Use Efficiency. Microorganisms 2023; 11:1046. [PMID: 37110469 PMCID: PMC10142644 DOI: 10.3390/microorganisms11041046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Wheat is one of the staple foods of the global population due to its adaptability to a wide range of environments. Nitrogen is one of the crucial limiting factors in wheat production and is considered a challenge to food security. Therefore, sustainable agricultural technologies such as seed inoculation with plant growth-promoting bacteria (PGPBs) can be adopted to promote biological nitrogen fixation (BNF) for higher crop productivity. In this context, the objective of the current study was to evaluate the effects of nitrogen fertilization and seed inoculations with Azospirillum brasilense, Bacillus subtilis and A. brasilense + B. subtilis on agronomic and yield attributes, grain yield, grain N accumulation, N use efficiency and applied N recovery in Brazilian Cerrado, which consists of gramineous woody savanna. The experiment was carried out in two cropping seasons in Rhodic Haplustox soil under a no-tillage system. The experiment was designed in a randomized complete block in a 4 × 5 factorial scheme, with four replications. The treatments consisted of four seed inoculations (control-without inoculation, inoculation with A. brasilense, B. subtilis and A. brasilense + B. subtilis) under five N doses (0, 40, 80, 120 and 160 kg ha-1, applied from urea) at the wheat tillering stage. Seed co-inoculation with A. brasilense + B. subtilis increased grain N accumulation, number of spikes m-1, grains spike-1 and grain yield of wheat in an irrigated no-tillage system of tropical savannah, regardless of the applied N doses. Nitrogen fertilization at a dose of 80 kg ha-1 significantly increased grain N accumulation and number of grains spikes-1 and nitrogen use efficiency. Recovery of applied N was increased with inoculation of B. subtilis and co-inoculation of A. brasilense + B. subtilis at increasing N doses. Therefore, N fertilization can be reduced by the inclusion of co-inoculation with A. brasilense + B. subtilis in the cultivation of winter wheat under a no-tillage system of Brazilian Cerrado.
Collapse
Affiliation(s)
- Rafaela Neris Gaspareto
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Arshad Jalal
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - William Cesar Nishimoto Ito
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Carlos Eduardo da Silva Oliveira
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Cássia Maria de Paula Garcia
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | | | - Poliana Aparecida Leonel Rosa
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Fernando Shintate Galindo
- Department of Crop Production, College of Agricultural and Technology Sciences, São Paulo State University (UNESP), Dracena 17900-000, SP, Brazil
| | - Salatiér Buzetti
- Department of Plant Protection, Rural Engineering and Soils (DEFERS), São Paulo State University (UNESP), Ilha Solteira 15385-000, SP, Brazil
| | - Bhim Bahadur Ghaley
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, 2630 Taastrup, Denmark
| | | |
Collapse
|
8
|
Han P, Zhai Y, Liu W, Lin H, An Q, Zhang Q, Ding S, Zhang D, Pan Z, Nie X. Dissection of Hyperspectral Reflectance to Estimate Photosynthetic Characteristics in Upland Cotton ( Gossypium hirsutum L.) under Different Nitrogen Fertilizer Application Based on Machine Learning Algorithms. PLANTS (BASEL, SWITZERLAND) 2023; 12:455. [PMID: 36771540 PMCID: PMC9919998 DOI: 10.3390/plants12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Hyperspectral technology has enabled rapid and efficient nitrogen monitoring in crops. However, most approaches involve direct monitoring of nitrogen content or physiological and biochemical indicators directly related to nitrogen, which cannot reflect the overall plant nutritional status. Two important photosynthetic traits, the fraction of absorbed photosynthetically active radiation (FAPAR) and the net photosynthetic rate (Pn), were previously shown to respond positively to nitrogen changes. Here, Pn and FAPAR were used for correlation analysis with hyperspectral data to establish a relationship between nitrogen status and hyperspectral characteristics through photosynthetic traits. Using principal component and band autocorrelation analyses of the original spectral reflectance, two band positions (350-450 and 600-750 nm) sensitive to nitrogen changes were obtained. The performances of four machine learning algorithm models based on six forms of hyperspectral transformations showed that the light gradient boosting machine (LightGBM) model based on the hyperspectral first derivative could better invert the Pn of function-leaves in cotton, and the random forest (RF) model based on hyperspectral first derivative could better invert the FAPAR of the cotton canopy. These results provide advanced metrics for non-destructive tracking of cotton nitrogen status, which can be used to diagnose nitrogen nutrition and cotton growth status in large farms.
Collapse
Affiliation(s)
- Peng Han
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Yaping Zhai
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Wenhong Liu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Hairong Lin
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Qiushuang An
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Qi Zhang
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Shugen Ding
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Dawei Zhang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhenyuan Pan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| |
Collapse
|
9
|
Chen Y, Wang K, Chen H, Yang H, Zheng T, Huang X, Fan G. Simultaneously genetic selection of wheat yield and grain protein quality in rice-wheat and soybean-wheat cropping systems through critical nitrogen efficiency-related traits. FRONTIERS IN PLANT SCIENCE 2022; 13:899387. [PMID: 36247613 PMCID: PMC9558111 DOI: 10.3389/fpls.2022.899387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Analyzing the contribution of nitrogen (N) uptake and its utilization in grain yield and protein quality-related traits in rice-wheat (RW) and soybean-wheat (SW) cropping systems is essential for simultaneous improvements in the two target traits. A field experiment with nine wheat genotypes was conducted in 2018-19 and 2019-20 cropping years to investigate N uptake and utilization-related traits associated with high wheat yield and good protein quality. Results showed that N uptake efficiency (NUpE) in the RW cropping system and N utilization efficiency (NUtE) in the SW cropping system explained 77.6 and 65.2% of yield variation, respectively, due to the contribution of fertile spikes and grain number per spike to grain yield varied depending on soil water and N availability in the two rotation systems. Lower grain protein content in the RW cropping system in comparison to the SW cropping system was mainly related to lower individual N accumulation at maturity, resulting from higher fertile spikes, rather than N harvest index (NHI). However, NHI in the SW cropping system accounted for greater variation in grain protein content. Both gluten index and post-anthesis N uptake were mainly affected by genotype, and low gluten index caused by high post-anthesis N uptake may be related to the simultaneous increase in kernel weight. N remobilization process associated with gluten quality was driven by increased sink N demand resulting from high grain number per unit area in the RW cropping system; confinement of low sink N demand and source capability resulted in low grain number per spike and water deficit limiting photosynthesis of flag leaf in the SW cropping system. CY-25 obtained high yield and wet gluten content at the expense of gluten index in the two wheat cropping systems, due to low plant height and high post-anthesis N uptake and kernel weight. From these results, we concluded that plant height, kernel weight, and post-anthesis N uptake were the critically agronomic and NUE-related traits for simultaneous selection of grain yield and protein quality. Our research results provided useful guidelines for improving both grain yield and protein quality by identifying desirable N-efficient genotypes in the two rotation systems.
Collapse
Affiliation(s)
- Yufeng Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kun Wang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Haolan Chen
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hongkun Yang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Ting Zheng
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Xiulan Huang
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| | - Gaoqiong Fan
- Crop Ecophysiology and Cultivation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Ministry of Science and Technology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System in Southwest China, Ministry of Agriculture and Rural Affairs, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
10
|
Zheng X, Yu Z, Yu F, Shi Y. Grain-filling characteristics and yield formation of wheat in two different soil fertility fields in the Huang-Huai-Hai Plain. FRONTIERS IN PLANT SCIENCE 2022; 13:932821. [PMID: 35968109 PMCID: PMC9364837 DOI: 10.3389/fpls.2022.932821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Clarifying factors that underpinning the variation in wheat yield components between high and middle soil fertility fields is critical to increase grain production and narrow yield gap for smallholder farming systems in the Huang-Huai-Hai Plain (3HP), which characterized by a large variation in soil fertility. Two-year field experiments were conducted to investigate wheat tillering, leaf photosynthesis, and grain filling characteristics in different soil fertility fields: high soil fertility field (HF) and middle soil fertility field (MF). Results showed that the spike formation rate in HF was 12.7%-13.0% higher than that in MF, leading to an 18.0%-19.8% increase in spike number. In addition, HF improved canopy light interception and leaf photosynthesis characteristics after anthesis and delayed leaf senescence, contributing to the increase in both the active grain filling period and grain filling rate. This resulted in a higher 1,000 grain weight in HF, which was 8.2%-8.3% higher than that in MF. Compared to MF, HF obtained higher yields at 9,840 kg ha-1 in 2017/18 and 11,462 kg ha-1 in 2018/19, respectively. In summary, higher spike number and 1,000-grain weight, which were mediated by spike-formation rate, maximization of light interception and improved leaf photosynthesis. These results would have important implications for narrowing yield gap between MF and HF in the 3HP.
Collapse
|
11
|
Growth, Yield and Photosynthetic Performance of Winter Wheat as Affected by Co-Application of Nitrogen Fertilizer and Organic Manures. Life (Basel) 2022; 12:life12071000. [PMID: 35888089 PMCID: PMC9319553 DOI: 10.3390/life12071000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/25/2022] Open
Abstract
The application of organic manures was found to be beneficial, however, the integrated use of organic manures with chemical nitrogen fertilizers has proven more sustainable in increasing the photosynthetic attributes and grain yield of the winter-wheat crop. A multi-factor split-plot design was adopted, nitrogen and manure fertilizer treatments were set in the sub-plots, including nitrogen-gradient treatment of T1:0 kg N ha−1, T2:100 kg N ha−1, T3:200 kg N ha−1, and T4:300 kg N ha−1 (pure nitrogen -fertilizer application) The 25% reduction in nitrogen combined with the manure-fertilizer application includes T5:75 kg N ha−1 nitrogen and 25 kg N ha−1 manure, T6:150 kg N ha−1 nitrogen and 50 kg N ha−1 manure, and T7:225 kg N ha−1 nitrogen and 75 kg N ha−1 manure. The maximum results of the total chlorophyll content and photosynthetic rate were 5.73 mg/g FW and 68.13 m mol m−2 s−1, observed under T4 in Zhongmai 175, as compared to Jindong 22 at the heading stage. However, the maximum results of intercellular CO2 concentration were 1998.47 μmol mol−1, observed under T3 in Jindong 22, as compared to Zhongmai 175 at the tillering stage. The maximum results of LAI were 5.35 (cm2), observed under T7 in Jindong 22, as compared to Zhongmai 175 at the booting stage. However, the maximum results of Tr and Gs were 6.31 mmol H2O m−2 s−1 and 0.90 H2O mol m−2 s−1, respectively, observed under T7 in Zhongmai 175 as compared to Jindong 22 at the flowering stage. The results revealed that grain yield 8696.93 kg ha−1, grains spike−1 51.33 (g), and 1000-grain weight 39.27 (g) were significantly higher, under T3 in Zhongmai 175, as compared to Jindong 22. Moreover, the spike number plot−1 of 656.67 m2 was significantly higher in Jindong 22, as compared to Zhongmai 175. It was concluded from the study that the combined application of nitrogen and manure fertilizers in winter wheat is significant for enhancing seed at the jointing and flowering stages. For increased grain yield and higher economic return, Zhongmai 175 outperformed the other cultivars examined. This research brings awareness toward the nitrogen-fertilizer-management approach established for farmers’ practice, which might be observed as an instruction to increase agricultural management for the winter-wheat-growth season.
Collapse
|