1
|
Peng Y, Jiang Y, Chen Q, Lin Y, Li M, Zhang Y, Wang Y, He W, Zhang Y, Wang X, Tang H, Luo Y. Comparative transcriptome and metabolomic analysis reveal key genes and mechanisms responsible for the dark-green leaf color of a strawberry mutant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 218:109327. [PMID: 39608287 DOI: 10.1016/j.plaphy.2024.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 11/30/2024]
Abstract
Photosynthesis is a source of energy for various types of plant life activities and is essential for plant growth and development. Consequently, the study of photosynthetic mechanisms has been a hot spot. Leaf color mutants has always been ideal materials for exploring the mechanisms of chlorophyll metabolism and photosynthesis. In this study, we identified a leaf color mutant of 'Benihoppe' strawberry in the field, which exhibited a darker green leaf color compared with the wild type. The content of total chlorophyll and carotenoid in the mutant leaves was elevated by 7.44-20.23% and 8.9-21.92%, respectively, compared with that of the wild type. Additionally, net photosynthetic rate in the mutant increased by 20.13%. Further transcriptome analysis showed that significant upregulation of genes such as GLK1, PPR, and MORF9 in the mutant leaves, which promoted chloroplast development. The expression levels of UROD, PPOC, PORA, CHLG, and CPOX were significantly upregulated during chlorophyll synthesis, while the expression levels of HCAR and CYP89A9 were significantly downregulated during chlorophyll degradation, thus leading to the accumulation of chlorophyll in mutant leaves. The upregulation of gene expression levels such as PetM, AtpD, PGK, and RPI4 during photosynthesis promoted multiple stages of light and dark reaction, thereby enhancing the photosynthetic capacity of the mutant. And the changes in metabolites such as monogalactosyl monoacylglycerol (MGMG), glucuronosyldiacylglycerol (GlcADG), raffinose, etc. also indicate that the mutant has metabolic differences in chloroplast composition and photosynthesis compared to 'Benihoppe'. The above results not only deepen our understanding of the mechanism behind the dark-green leaf color in strawberry mutants but also provide potential genetic resources for cultivating strawberry varieties with enhanced photosynthetic capacity.
Collapse
Affiliation(s)
- Yuting Peng
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuyan Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan Province, China.
| |
Collapse
|
2
|
Ma Y, Zhang Y, Xu J, Zhao D, Guo L, Liu X, Zhang H. Recent advances in response to environmental signals during Arabidopsis root development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109037. [PMID: 39173364 DOI: 10.1016/j.plaphy.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/24/2024]
Abstract
Plants grow by anchoring their roots in the soil, acquiring essential water and nutrients for growth, and interacting with other signaling factors in the soil. Root systems are crucial for both the basic growth and development of plants and their response to external environmental stimuli. Under different environmental conditions, the configuration of root systems in plants can undergo significant changes, with their strength determining the plant's ability to adapt to the environment. Therefore, understanding the mechanisms by which environmental factors regulate root development is essential for crop root architecture improvement and breeding for stress resistance. This paper summarizes the research progress in genetic regulation of root development of the model plant Arabidopsis thaliana (L.) Heynh. amidst diverse environmental stimuli over the past five years. Specifically, it focuses on the regulatory networks of environmental signals, encompassing light, energy, temperature, water, nutrients, and reactive oxygen species, on root development. Furthermore, it provides prospects for the application of root architecture improvement in crop breeding for stress resistance and nutrient efficiency.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050051, China
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Dan Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China; College of Life Sciences, Hengshui University, Hengshui, 053010, China
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
3
|
Fan YG, Zhao TT, Xiang QZ, Han XY, Yang SS, Zhang LX, Ren LJ. Multi-Omics Research Accelerates the Clarification of the Formation Mechanism and the Influence of Leaf Color Variation in Tea ( Camellia sinensis) Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:426. [PMID: 38337959 PMCID: PMC10857240 DOI: 10.3390/plants13030426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Tea is a popular beverage with characteristic functional and flavor qualities, known to be rich in bioactive metabolites such as tea polyphenols and theanine. Recently, tea varieties with variations in leaf color have been widely used in agriculture production due to their potential advantages in terms of tea quality. Numerous studies have used genome, transcriptome, metabolome, proteome, and lipidome methods to uncover the causes of leaf color variations and investigate their impacts on the accumulation of crucial bioactive metabolites in tea plants. Through a comprehensive review of various omics investigations, we note that decreased expression levels of critical genes in the biosynthesis of chlorophyll and carotenoids, activated chlorophyll degradation, and an impaired photosynthetic chain function are related to the chlorina phenotype in tea plants. For purple-leaf tea, increased expression levels of late biosynthetic genes in the flavonoid synthesis pathway and anthocyanin transport genes are the major and common causes of purple coloration. We have also summarized the influence of leaf color variation on amino acid, polyphenol, and lipid contents and put forward possible causes of these metabolic changes. Finally, this review further proposes the research demands in this field in the future.
Collapse
Affiliation(s)
- Yan-Gen Fan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Ting-Ting Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Qin-Zeng Xiang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Xiao-Yang Han
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Shu-Sen Yang
- Yipinming Tea Planting Farmers Specialized Cooperative, Longnan 746400, China;
| | - Li-Xia Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| | - Li-Jun Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China; (Y.-G.F.); (T.-T.Z.); (Q.-Z.X.); (X.-Y.H.)
| |
Collapse
|
4
|
Huang R, Wang Z, Wen W, Yao M, Liu H, Li F, Zhang S, Ni D, Chen L. Comprehensive dissection of variation and accumulation of free amino acids in tea accessions. HORTICULTURE RESEARCH 2024; 11:uhad263. [PMID: 38304331 PMCID: PMC10833077 DOI: 10.1093/hr/uhad263] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/26/2023] [Indexed: 02/03/2024]
Abstract
Free amino acids (FAAs) positively determine the tea quality, notably theanine (Thea), endowing umami taste of tea infusion, which is the profoundly prevalent research in albino tea genetic resources. Therefore, 339 tea accessions were collected to study FAAs level for deciphering its variation and accumulation mechanism. Interestingly, alanine (Ala) and Thea which had the highest diversity index (H') value among three varieties of Camellia sinensis (L.) O. Kuntze were significantly higher than wild relatives (P < 0.05). The intraspecific arginine (Arg) and glutamine (Gln) contents in C. sinensis var. assamica were significantly lower than sinensis and pubilimba varieties. Moreover, the importance of interdependencies operating across FAAs and chlorophyll levels were highlighted via the cell ultrastructure, metabolomics, and transcriptome analysis. We then determined that the association between phytochrome interacting factor 1 (CsPIF1) identified by weighted gene co-expression network analysis (WGCNA) and Thea content. Intriguingly, transient knock-down CsPIF1 expression increased Thea content in tea plant, and the function verification of CsPIF1 in Arabidopsis also indicated that CsPIF1 acts as a negative regulator of Thea content by mainly effecting the genes expression related to Thea biosynthesis, transport, and hydrolysis, especially glutamate synthase (CsGOGAT), which was validated to be associated with Thea content with a nonsynonymous SNP by Kompetitive Allele-Specific PCR (KASP). We also investigated the interspecific and geographical distribution of this SNP. Taken together, these results help us to understand and clarify the variation and profile of major FAAs in tea germplasms and promote efficient utilization in tea genetic improvement and breeding.
Collapse
Affiliation(s)
- Rong Huang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihua Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Weiwei Wen
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fang Li
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Shuran Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Dejiang Ni
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs; Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
5
|
Liu D, Wei K, Zhang C, Liu H, Gong Y, Ye Y, Chen J, Yao M, Chen L, Ma C. The potential effects of chlorophyll-deficient mutation and tree_age on the accumulation of amino acid components in tea plants. Food Chem 2023; 411:135527. [PMID: 36701915 DOI: 10.1016/j.foodchem.2023.135527] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/23/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Albino tea has been receiving growing attention on the tea market due to its attractive appearance and fresh taste, mainly caused by high amino acid contents. Here, variations in the contents of five free amino acids in relation to pigment contents and tree age in two hybrid populations'Longjin 43'(♀) × 'Baijiguan'(♂) and 'Longjin 43'(♀) ×'Huangjinya'(♂) with 334 first filial generation individuals including chlorophyll-deficient and normal tea plants were investigated. The data showed that the contents of main amino acids in all filial generation gradually decreased as plant age increased. Principal component analysis indicated that the amino acid content of individual plant tended to be stable with the growth of plants. Correlation analysis clarified that several main amino acids were significantly negatively correlated with chlorophyll a, chlorophyll b and carotenoid contents. Our results showed that the accumulation of amino acids in tea plant was closely related to leaf color variation and the tree age during growing period.
Collapse
Affiliation(s)
- Dingding Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Kang Wei
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chenyu Zhang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haoran Liu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yang Gong
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuanyuan Ye
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiedan Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingzhe Yao
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liang Chen
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunlei Ma
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute of the Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
6
|
Han H, Zhou Y, Liu H, Chen X, Wang Q, Zhuang H, Sun X, Ling Q, Zhang H, Wang B, Wang J, Tang Y, Wang H, Liu H. Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1623. [PMID: 37111847 PMCID: PMC10143263 DOI: 10.3390/plants12081623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.
Collapse
Affiliation(s)
- Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yuan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huifang Liu
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qiang Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hongmei Zhuang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xiaoxia Sun
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China
| | - Baike Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Juan Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yaping Tang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hao Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| |
Collapse
|
7
|
Chen Y, Li Y, Shen C, Xiao L. Topics and trends in fresh tea ( Camellia sinensis) leaf research: A comprehensive bibliometric study. FRONTIERS IN PLANT SCIENCE 2023; 14:1092511. [PMID: 37089662 PMCID: PMC10118041 DOI: 10.3389/fpls.2023.1092511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Tea plant (Camellia sinensis) is a widely cultivated cash crop and tea is a favorite functional food in the world. Fresh tea leaves (FTLs) play a critical role in bridging the two fields closely related to tea cultivation and tea processing, those are, tea plant biology and tea biochemistry. To provide a comprehensive overview of the development stages, authorship collaboration, research topics, and hotspots and their temporal evolution trends in the field of FTLs research, we conducted a bibliometric analysis, based on 971 publications on FTLs-related research published during 2001-2021 from Web of Science Core Collection. CiteSpace, R package Bibliometrix, and VOSviewer were employed in this research. The results revealed that the development history can be roughly divided into three stages, namely initial stage, slow development stage and rapid development stage. Journal of Agricultural & Food Chemistry published most articles in this field, while Frontiers in Plant Science held the highest total citations and h-index. The most influential country, institution, and author in this field was identified as China, the Chinese Academy of Agricultural Sciences, and Xiaochun Wan, respectively. FTLs-related research can be categorized into three main topics: the regulation mechanism of key genes, the metabolism and features of essential compounds, and tea plants' growth and stress responses. The most concerning hotspots are the application of advanced technologies, essential metabolites, leaf color variants, and effective cultivation treatments. There has been a shift from basic biochemical and enzymatic studies to studies of molecular mechanisms that depend on multi-omics technologies. We also discussed the future development in this field. This study provides a comprehensive summary of the research field, making it easier for researchers to be informed about its development history, status, and trends.
Collapse
Affiliation(s)
- YiQin Chen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - YunFei Li
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
| | - ChengWen Shen
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| | - LiZheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, College of Horticulture, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha, China
- Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha, China
- *Correspondence: Chengwen Shen, ; Lizheng Xiao,
| |
Collapse
|
8
|
Shao C, Jiao H, Chen J, Zhang C, Liu J, Chen J, Li Y, Huang J, Yang B, Liu Z, Shen C. Carbon and Nitrogen Metabolism Are Jointly Regulated During Shading in Roots and Leaves of Camellia Sinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:894840. [PMID: 35498711 PMCID: PMC9051521 DOI: 10.3389/fpls.2022.894840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that plant shading can promote the quality of green tea. However, the association of shading with metabolic regulation in tea leaves and roots remains unelucidated. Here, the metabolic profiling of two tea cultivars ("Xiangfeicui" and "Jinxuan") in response to shading and relighting periods during the summer season was performed using non-targeted metabolomics methods. The metabolic pathway analyses revealed that long-term shading remarkably inhibit the sugar metabolism such as glycolysis, galactose metabolism, and pentose phosphate pathway in the leaves and roots of "Xiangfeicui," and "Jinxuan" were more sensitive to light recovery changes. The lipid metabolism in the leaves and roots of "Xiangfeicui" was promoted by short-term shading, while it was inhibited by long-term shading. In addition, the intensity of the flavonoid metabolites in the leaves and roots of "Jinxuan" were upregulated with a trend of rising first and then decreasing under shading, and five flavonoid synthesis genes showed the same trend (F3H, F3'5'H, DFR, ANS, and ANR). Simultaneously, the amino acids of the nitrogen metabolism in the leaves and roots of the two cultivars were significantly promoted by long-term shading, while the purine and caffeine metabolism was inhibited in the leaves of "Xiangfeicui." Interestingly, CsGS1.1 and CsTSI, amino acid synthase genes was upregulated in the leaves and roots of two cultivars. These results indicated that shading could participate in carbon and nitrogen metabolic regulation of both leaf and root, and root metabolism could have a positive association with leaf metabolism to promote the shaded tea quality.
Collapse
Affiliation(s)
- Chenyu Shao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Haizhen Jiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jiahao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Chenyu Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Tea Research Institution, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Jie Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jianjiao Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Yunfei Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Jing Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Biao Yang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| | - Chengwen Shen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
- Co-innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, China
| |
Collapse
|