1
|
Ding W, Duan Y, Wang Y, Fan J, Rao W, Xing S. Quantitative Proteomic Analysis of Lysine Malonylation in Response to Salicylic Acid in the Roots of Platycodon grandiflorus. Int J Mol Sci 2025; 26:1392. [PMID: 39941159 PMCID: PMC11818218 DOI: 10.3390/ijms26031392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Salicylic acid, as a plant hormone, significantly affects the physiological and biochemical indexes of soluble sugar, malondialdehyde content, peroxidase, and superoxide dismutase enzyme activity in Platycodon grandiflorus. Lysine malonylation is a post-translational modification that involves various cellular functions in plants, though it is rarely studied, especially in medicinal plants. In this study, the aim was to perform a comparative quantitative proteomic study of malonylation modification on P. grandiflorus root proteins after salicylic acid treatment using Western blot with specific antibodies, affinity enrichment and LC-MS/MS analysis methods. The analysis identified 1907 malonyl sites for 809 proteins, with 414 proteins and 798 modification sites quantified with high confidence. Post-treatment, 361 proteins were upregulated, and 310 were downregulated. Bioinformatics analysis revealed that malonylation in P. grandiflorus is primarily involved in photosynthesis and carbon metabolism. Physiological and biochemical analysis showed that salicylic acid treatment increased the malondialdehyde levels, soluble protein, superoxide dismutase, and peroxidase activity but did not significantly affect the total saponins content in P. grandiflorus. These findings provide an important basis for exploring the molecular mechanisms of P. grandiflorus following salicylic acid treatment and enhance understanding of the biological function of protein lysine malonylation in plants.
Collapse
Affiliation(s)
- Wanyue Ding
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Yingying Duan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Yuqing Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Jizhou Fan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
| | - Weiyi Rao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- MOE—Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; (W.D.); (Y.D.); (Y.W.); (J.F.); (W.R.)
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei 230012, China
- MOE—Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230038, China
| |
Collapse
|
2
|
Yang Q, Xu S, Jiang W, Meng F, Wang S, Sun Z, Chen N, Peng D, Liu J, Xing S. Systematic qualitative proteome-wide analysis of lysine malonylation profiling in Platycodon grandiflorus. Amino Acids 2025; 57:9. [PMID: 39812870 PMCID: PMC11735498 DOI: 10.1007/s00726-024-03432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025]
Abstract
In recent years, it was found that lysine malonylation modification can affect biological metabolism and play an important role in plant life activities. Platycodon grandiflorus, an economic crop and medicinal plant, had no reports on malonylation in the related literature. This study qualitatively introduces lysine malonylation in P. grandiflorus. A total of 888 lysine malonylation-modified proteins in P. grandiflorus were identified, with a total of 1755 modification sites. According to the functional annotation, malonylated proteins were closely related to catalysis, binding, and other reactions. Subcellular localization showed that related proteins were enriched in chloroplasts, cytoplasm, and nuclei, indicating that this modification could regulate various metabolic processes. Motif analysis showed the enrichment of Alanine (A), Cysteine (C), Glycine (G), and Valine (V) amino acids surrounding malonylated lysine residues. Metabolic pathway and protein-protein interaction network analyses suggested these modifications are mainly involved in plant photosynthesis. Moreover, malonylated proteins are also involved in stress and defense responses. This study shows that lysine malonylation can affect a variety of biological processes and metabolic pathways, and the contents are reported for the first time in P. grandiflorus, which can provide important information for further research on P. grandiflorus and lysine malonylation's role in environment stress, photosynthesis, and secondary metabolites enrichment.
Collapse
Affiliation(s)
- Qingshan Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Shaowei Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weimin Jiang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences and Environment, Hengyang Normal University, Hengyang, 421008, Hunan, China
| | - Fei Meng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
| | - Shuting Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zongping Sun
- Engineering Technology Research Center of Anti-Aging, Chinese Herbal Medicine, Fuyang Normal University, Fuyang, 236037, China
| | - Na Chen
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Hefei Comprehensive National Science Center, Bozhou, 236814, China
| | - Daiyin Peng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, 230038, China
| | - Juan Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Shihai Xing
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Joint Research Center for Chinese Herbal Medicine of Anhui of IHM, Hefei Comprehensive National Science Center, Bozhou, 236814, China.
| |
Collapse
|
3
|
Binoy A, Nanjan P, Chellamuthu K, Liu H, Zhu S. A click chemistry-based biorthogonal approach for the detection and identification of protein lysine malonylation for osteoarthritis research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.628274. [PMID: 39713453 PMCID: PMC11661220 DOI: 10.1101/2024.12.12.628274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Lysine malonylation is a post-translational modification where a malonyl group, characterized by a negatively charged carboxylate, is covalently attached to the Ɛ-amino side chain of lysine, influencing protein structure and function. Our laboratory identified Mak upregulation in cartilage under aging and obesity, contributing to osteoarthritis (OA). Current antibody-based detection methods face limitations in identifying Mak targets. Here, we introduce an alkyne-functionalized probe, MA-diyne, which metabolically incorporates into proteins, enabling copper(I) ion-catalyzed click reactions to conjugate labeled proteins with azide-based fluorescent dyes or affinity purification tags. In-gel fluorescence confirms MA-diyne incorporation into proteins across various cell types and species, including mouse chondrocytes, adipocytes, Hek293T cells, and C. elegans. Pull-down experiments identified known Mak proteins such as GAPDH and Aldolase. The extent of MA-diyne modification was higher in Sirtuin 5-deficient cells suggesting these modified proteins are Sirtuin 5 substrates. Pulse-chase experiments confirmed the dynamic nature of protein malonylation. Quantitative proteomics identified 1136 proteins corresponding to 8903 peptides with 429 proteins showing 1-fold increase in labeled group. Sirtuin 5 regulated 374 of these proteins. Pull down of newly identified proteins such as β-actin and Stat3 was also done. This study highlights MA-diyne as a powerful chemical tool to investigate the molecular targets and functions of lysine malonylation in OA conditions.
Collapse
Affiliation(s)
- Anupama Binoy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Pandurangan Nanjan
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore Campus, Tamilnadu, 641112, India
| | - Kavya Chellamuthu
- Department of Chemistry, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore Campus, Tamilnadu, 641112, India
| | - Huanhuan Liu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| | - Shouan Zhu
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
- Diabetes Institute (DI), Heritage College of Osteopathic Medicine (HCOM), Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
4
|
Willems P, Sterck L, Dard A, Huang J, De Smet I, Gevaert K, Van Breusegem F. The Plant PTM Viewer 2.0: in-depth exploration of plant protein modification landscapes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4611-4624. [PMID: 38872385 DOI: 10.1093/jxb/erae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Post-translational modifications (PTMs) greatly increase protein diversity and functionality. To help the plant research community interpret the ever-increasing number of reported PTMs, the Plant PTM Viewer (https://www.psb.ugent.be/PlantPTMViewer) provides an intuitive overview of plant protein PTMs and the tools to assess it. This update includes 62 novel PTM profiling studies, adding a total of 112 000 modified peptides reporting plant PTMs, including 14 additional PTM types and three species (moss, tomato, and soybean). Furthermore, an open modification re-analysis of a large-scale Arabidopsis thaliana mass spectrometry tissue atlas identified previously uncharted landscapes of lysine acylations predominant in seed and flower tissues and 3-phosphoglycerylation on glycolytic enzymes in plants. An extra 'Protein list analysis' tool was developed for retrieval and assessing the enrichment of PTMs in a protein list of interest. We conducted a protein list analysis on nuclear proteins, revealing a substantial number of redox modifications in the nucleus, confirming previous assumptions regarding the redox regulation of transcription. We encourage the plant research community to use PTM Viewer 2.0 for hypothesis testing and new target discovery, and also to submit new data to expand the coverage of conditions, plant species, and PTM types, thereby enriching our understanding of plant biology.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
5
|
Xue Q, Yang Y, Li H, Li X, Zou L, Li T, Ma H, Qi H, Wang J, Yu T. Functions and mechanisms of protein lysine butyrylation (Kbu): Therapeutic implications in human diseases. Genes Dis 2023; 10:2479-2490. [PMID: 37554202 PMCID: PMC10404885 DOI: 10.1016/j.gendis.2022.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Post-translational modifications (PTM) are covalent modifications of proteins or peptides caused by proteolytic cleavage or the attachment of moieties to one or more amino acids. PTMs play essential roles in biological function and regulation and have been linked with several diseases. Modifications of protein acylation (Kac), a type of PTM, are known to induce epigenetic regulatory processes that promote various diseases. Thus, an increasing number of studies focusing on acylation modifications are being undertaken. Butyrylation (Kbu) is a new acylation process found in animals and plants. Kbu has been recently linked to the onset and progression of several diseases, such as cancer, cardiovascular diseases, diabetes, and vascular dementia. Moreover, the mode of action of certain drugs used in the treatment of lymphoma and colon cancer is based on the regulation of butyrylation levels, suggesting that butyrylation may play a therapeutic role in these diseases. In addition, butyrylation is also commonly involved in rice gene expression and thus plays an important role in the growth, development, and metabolism of rice. The tools and analytical methods that could be utilized for the prediction and detection of lysine butyrylation have also been investigated. This study reviews the potential role of histone Kbu, as well as the mechanisms underlying this process. It also summarizes various enzymes and analytical methods associated with Kbu, with the goal of providing new insights into the role of Kbu in gene regulation and diseases.
Collapse
Affiliation(s)
- Qianqian Xue
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yanyan Yang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hong Li
- Clinical Laboratory, Central Laboratory. The Affiliated Qingdao Hiser Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Xiaoxin Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jianxun Wang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| |
Collapse
|
6
|
Wang M, Zhu Q, Yao N, Liang W, Ma X, Li J, Li X, Wang L, Liang W. The Enzyme Lysine Malonylation of Calvin Cycle and Gluconeogenesis Regulated Glycometabolism in Nostoc flagelliforme to Adapt to Drought Stress. Int J Mol Sci 2023; 24:ijms24098446. [PMID: 37176152 PMCID: PMC10179182 DOI: 10.3390/ijms24098446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023] Open
Abstract
Lysine malonylation (Kmal) is an evolutionarily conserved post-translational modification (PTM) that has been demonstrated to be involved in cellular and organismal metabolism. However, the role that Kmal plays in response to drought stress of the terrestrial cyanobacteria N. flagelliforme is still unknown. In this study, we performed the first proteomic analysis of Kmal in N. flagelliforme under different drought stresses using LC-MS/MS. In total, 421 malonylated lysine residues were found in 236 different proteins. GO and KEGG enrichment analysis indicated that these malonylated proteins were highly enriched in several metabolic pathways, including carbon metabolism and photosynthesis. Decreased malonylation levels were found to hinder the reception and transmission of light energy and CO2 fixation, which led to a decrease in photosynthetic activity. Kmal was also shown to inhibit the flux of the TCA cycle and activate the gluconeogenesis pathway in response to drought stress. Furthermore, malonylated antioxidant enzymes and antioxidants were synergistically involved in reactive oxygen species (ROS) scavenging. Malonylation was involved in lipid degradation and amino acid biosynthesis as part of drought stress adaptation. This work represents the first comprehensive investigation of the role of malonylation in dehydrated N. flagelliforme, providing an important resource for understanding the drought tolerance mechanism of this organism.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Qiang Zhu
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Ning Yao
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Wangli Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxia Ma
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Jingjing Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaoxu Li
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Lingxia Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Wenyu Liang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
7
|
Kausar R, Wang X, Komatsu S. Crop Proteomics under Abiotic Stress: From Data to Insights. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212877. [PMID: 36365330 PMCID: PMC9657731 DOI: 10.3390/plants11212877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/22/2022] [Indexed: 06/09/2023]
Abstract
Food security is a major challenge in the present world due to erratic weather and climatic changes. Environmental stress negatively affects plant growth and development which leads to reduced crop yields. Technological advancements have caused remarkable improvements in crop-breeding programs. Proteins have an indispensable role in developing stress resilience and tolerance in crops. Genomic and biotechnological advancements have made the process of crop improvement more accurate and targeted. Proteomic studies provide the information required for such targeted approaches. The crosstalk among cellular components is being analyzed by subcellular proteomics. Additionally, the functional diversity of proteins is being unraveled by post-translational modifications during abiotic stress. The exploration of precise cellular responses and the networking among different cellular organelles help in the prediction of signaling pathways and protein-protein interactions. High-throughput mass-spectrometry-based protein studies are now possible due to incremental advancements in mass-spectrometry techniques, sample protocols, and bioinformatic tools as well as the increasing availability of plant genome sequence information for multiple species. In this review, the key role of proteomic analysis in identifying the abiotic-stress-responsive mechanisms in various crops was summarized. The development and availability of advanced computational tools were discussed in detail. The highly variable protein responses among different crops have provided a wide avenue for molecular-marker-assisted genetic buildup studies to develop smart, high-yielding, and stress-tolerant varieties to cope with food-security challenges.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|