1
|
Bocos-Asenjo IT, Amin H, Mosquera S, Díez-Hermano S, Ginésy M, Diez JJ, Niño-Sánchez J. Spray-Induced Gene Silencing (SIGS) as a Tool for the Management of Pine Pitch Canker Forest Disease. PLANT DISEASE 2025; 109:49-62. [PMID: 39148367 DOI: 10.1094/pdis-02-24-0286-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Global change is exacerbating the prevalence of plant diseases caused by pathogenic fungi in forests worldwide. The conventional use of chemical fungicides, which is commonplace in agricultural settings, is not sanctioned for application in forest ecosystems, so novel control strategies are imperative. Spray-induced gene silencing (SIGS) is a promising approach that can modulate the expression of target genes in eukaryotes in response to double-stranded RNA (dsRNA) present in the environment that triggers the RNA interference mechanism. SIGS exhibited notable success in reducing virulence when deployed against some crop fungal pathogens, such as Fusarium graminearum, Botrytis cinerea, and Sclerotinia sclerotiorum, among others. However, there is a conspicuous dearth of studies evaluating the applicability of SIGS for managing forest pathogens. This research aimed to determine whether SIGS could be used to control F. circinatum, a widely impactful forest pathogen that causes pine pitch canker disease. Through a bacterial synthesis, we produced dsRNA molecules to target fungal essential genes involved in vesicle trafficking (Vps51, DCTN1, and SAC1), signal transduction (Pp2a, Sit4, Ppg1, and Tap42), and cell wall biogenesis (Chs1, Chs2, Chs3b, and Gls1) metabolic pathways. We confirmed that F. circinatum is able to uptake externally applied dsRNA, triggering an inhibition of the pathogen's virulence. Furthermore, this study pioneers the demonstration that recurrent applications of dsRNAs in SIGS are more effective in protecting plants than single applications. Therefore, SIGS emerges as an effective and sustainable approach for managing plant pathogens, showcasing its efficacy in controlling a globally significant forest pathogen subject to quarantine measures.
Collapse
Affiliation(s)
- Irene Teresa Bocos-Asenjo
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), Higher Technical School of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia 34004, Spain
| | - Huma Amin
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), Higher Technical School of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia 34004, Spain
| | - Sandra Mosquera
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), Higher Technical School of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia 34004, Spain
| | - Sergio Díez-Hermano
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), Higher Technical School of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia 34004, Spain
| | - Mireille Ginésy
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), Higher Technical School of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia 34004, Spain
| | - Julio Javier Diez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), Higher Technical School of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia 34004, Spain
| | - Jonatan Niño-Sánchez
- Department of Plant Production and Forest Resources, Sustainable Forest Management Research Institute (iuFOR), Higher Technical School of Agricultural Engineering (ETSIIAA), University of Valladolid, Palencia 34004, Spain
| |
Collapse
|
2
|
Venu E, Ramya A, Babu PL, Srinivas B, Kumar S, Reddy NK, Babu YM, Majumdar A, Manik S. Exogenous dsRNA-Mediated RNAi: Mechanisms, Applications, Delivery Methods and Challenges in the Induction of Viral Disease Resistance in Plants. Viruses 2024; 17:49. [PMID: 39861836 PMCID: PMC11769437 DOI: 10.3390/v17010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The increasing challenges posed by plant viral diseases demand innovative and sustainable management strategies to minimize agricultural losses. Exogenous double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) represents a transformative approach to combat plant viral pathogens without the need for genetic transformation. This review explores the mechanisms underlying dsRNA-induced RNAi, highlighting its ability to silence specific viral genes through small interfering RNAs (siRNAs). Key advancements in dsRNA production, including cost-effective microbial synthesis and in vitro methods, are examined alongside delivery techniques such as spray-induced gene silencing (SIGS) and nanocarrier-based systems. Strategies for enhancing dsRNA stability, including the use of nanomaterials like layered double hydroxide nanosheets and carbon dots, are discussed to address environmental degradation challenges. Practical applications of this technology against various plant viruses and its potential to ensure food security are emphasized. The review also delves into regulatory considerations, risk assessments, and the challenges associated with off-target effects and pathogen resistance. By evaluating both opportunities and limitations, this review underscores the role of exogenous dsRNA as a sustainable solution for achieving viral disease resistance in plants.
Collapse
Affiliation(s)
- Emmadi Venu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Akurathi Ramya
- Department of Plant Pathology, Junagadh Agricultural University, Junagadh 362001, India
| | - Pedapudi Lokesh Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Bhukya Srinivas
- Department of Plant Pathology, Professor Jayashankar Telangana State Agricultural University, Rajendranagar, Hyderabad 500030, India;
| | - Sathiyaseelan Kumar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Namburi Karunakar Reddy
- Department of Plant Pathology, University of Agricultural Sciences, GKVK, Bengaluru 560065, India;
| | - Yeluru Mohan Babu
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Anik Majumdar
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| | - Suryakant Manik
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi 110012, India; (P.L.B.); (S.K.); (Y.M.B.); (A.M.); (S.M.)
| |
Collapse
|
3
|
Sellamuthu G, Chakraborty A, Vetukuri RR, Sarath S, Roy A. RNAi-biofungicides: a quantum leap for tree fungal pathogen management. Crit Rev Biotechnol 2024:1-28. [PMID: 39647992 DOI: 10.1080/07388551.2024.2430478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 12/10/2024]
Abstract
Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amrita Chakraborty
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saravanasakthi Sarath
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry & Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Khara A, Chakraborty A, Modlinger R, Synek J, Roy A. Comparative metagenomic study unveils new insights on bacterial communities in two pine-feeding Ips beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol 2024; 15:1400894. [PMID: 39444680 PMCID: PMC11496174 DOI: 10.3389/fmicb.2024.1400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024] Open
Abstract
Background Climate change has recently boosted the severity and frequency of pine bark beetle attacks. The bacterial community associated with these beetles acts as "hidden players," enhancing their ability to infest and thrive on defense-rich pine trees. There is limited understanding of the environmental acquisition of these hidden players and their life stage-specific association with different pine-feeding bark beetles. There is inadequate knowledge on novel bacterial introduction to pine trees after the beetle infestation. Hence, we conducted the first comparative bacterial metabarcoding study revealing the bacterial communities in the pine trees before and after beetle feeding and in different life stages of two dominant pine-feeding bark beetles, namely Ips sexdentatus and Ips acuminatus. We also evaluated the bacterial association between wild and lab-bred beetles to measure the deviation due to inhabiting a controlled environment. Results Significant differences in bacterial amplicon sequence variance (ASVs) abundance existed among different life stages within and between the pine beetles. However, Pseudomonas, Serratia, Pseudoxanthomonas, Taibaiella, and Acinetobacter served as core bacteria. Interestingly, I. sexdentatus larvae correspond to significantly higher bacterial diversity and community richness and evenness compared to other developmental stages, while I. acuminatus adults displayed higher bacterial richness with no significant variation in the diversity and evenness between the life stages. Both wild and lab-bred I. sexdentatus beetles showed a prevalence of the bacterial family Pseudomonadaceae. In addition, wild I. sexdentatus showed dominance of Yersiniaceae, whereas Erwiniaceae was abundant in lab-bred beetles. Alternatively, Acidobacteriaceae, Corynebacteriaceae, and Microbacteriaceae were highly abundant bacterial families in lab-bred, whereas Chitinophagaceae and Microbacteriaceae were highly abundant in wild I. accuminatus. We validated the relative abundances of selected bacterial taxa estimated by metagenomic sequencing with quantitative PCR. Conclusion Our study sheds new insights into bacterial associations in pine beetles under the influence of various drivers such as environment, host, and life stages. We documented that lab-breeding considerably influences beetle bacterial community assembly. Furthermore, beetle feeding alters bacteriome at the microhabitat level. Nevertheless, our study revisited pine-feeding bark beetle symbiosis under the influence of different drivers and revealed intriguing insight into bacterial community assembly, facilitating future functional studies.
Collapse
Affiliation(s)
| | - Amrita Chakraborty
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | | | | | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
5
|
Naseer A, Singh VV, Sellamuthu G, Synek J, Mogilicherla K, Kokoska L, Roy A. Insights into the Detoxification of Spruce Monoterpenes by the Eurasian Spruce Bark Beetle. Int J Mol Sci 2024; 25:10209. [PMID: 39337695 PMCID: PMC11432361 DOI: 10.3390/ijms251810209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Plant defence mechanisms, including physical barriers like toughened bark and chemical defences like allelochemicals, are essential for protecting them against pests. Trees allocate non-structural carbohydrates (NSCs) to produce secondary metabolites like monoterpenes, which increase during biotic stress to fend off pests like the Eurasian spruce bark beetle, ESBB (Ips typographus). Despite these defences, the ESBB infests Norway spruce, causing significant ecological damage by exploiting weakened trees and using pheromones for aggregation. However, the mechanism of sensing and resistance towards host allelochemicals in ESBB is poorly understood. We hypothesised that the exposure of ESBB to spruce allelochemicals, especially monoterpenes, leads to an upsurge in the important detoxification genes like P450s, GSTs, UGTs, and transporters, and at the same time, genes responsible for development must be compromised. The current study demonstrates that exposure to monoterpenes like R-limonene and sabiene effectively elevated detoxification enzyme activities. The differential gene expression (DGE) analysis revealed 294 differentially expressed (DE) detoxification genes in response to R-limonene and 426 DE detoxification genes in response to sabiene treatments, with 209 common genes between the treatments. Amongst these, genes from the cytochrome P450 family 4 and 6 genes (CP4 and CP6), esterases, glutathione S-transferases family 1 (GSTT1), UDP-glucuronosyltransferase 2B genes (UDB), and glucose synthesis-related dehydrogenases were highly upregulated. We further validated 19 genes using RT-qPCR. Additionally, we observed similar high expression levels of detoxification genes across different monoterpene treatments, including myrcene and α-pinene, suggesting a conserved detoxification mechanism in ESBB, which demands further investigation. These findings highlight the potential for molecular target-based beetle management strategies targeting these key detoxification genes.
Collapse
Affiliation(s)
- Aisha Naseer
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Vivek Vikram Singh
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- Institute of Forest Ecology, Slovak Academy of Sciences, Štúrova 2, 960 53 Zvolen, Slovakia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Jiří Synek
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
- ICAR-Indian Institute of Rice Research (IIRR), Rajendra Nagar, Hyderabad 500030, Telangana, India
| | - Ladislav Kokoska
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha-Suchdol, 165 00 Prague, Czech Republic
| |
Collapse
|
6
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
7
|
Sun J, Koski TM, Wickham JD, Baranchikov YN, Bushley KE. Emerald Ash Borer Management and Research: Decades of Damage and Still Expanding. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:239-258. [PMID: 37708417 DOI: 10.1146/annurev-ento-012323-032231] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Since the discovery of the ash tree (Fraxinus spp.) killer emerald ash borer (EAB; Agrilus planipennis) in the United States in 2002 and Moscow, Russia in 2003, substantial detection and management efforts have been applied to contain and monitor its spread and mitigate impacts. Despite these efforts, the pest continues to spread within North America. It has spread to European Russia and Ukraine and is causing sporadic outbreaks in its native range in China. The dynamics of EAB's range expansion events appear to be linked to the lack of resistant ash trees in invaded ranges, facilitated by the abundance of native or planted North American susceptible ash species. We review recently gained knowledge of the range expansion of EAB; its ecological, economic, and social impacts; and past management efforts with their successes and limitations. We also highlight advances in biological control, mechanisms of ash resistance, and new detection and management approaches under development, with the aim of guiding more effective management.
Collapse
Affiliation(s)
- Jianghua Sun
- Hebei Basic Science Center for Biotic Interactions/Collece of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China; ,
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- Hebei Basic Science Center for Biotic Interactions/Collece of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China; ,
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- A.N. Severstov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation;
| | - Yuri N Baranchikov
- V.N. Sukachev Institute of Forest, Siberian Branch, Russian Academy of Sciences, Krasnoyarsk, Russian Federation;
| | - Kathryn E Bushley
- Agricultural Research Service, US Department of Agriculture, Ithaca, New York, USA;
| |
Collapse
|
8
|
Singh D. Macromolecular Polymer Based Complexes: A Diverse Strategy for the Delivery of Nucleotides. Protein Pept Lett 2024; 31:586-601. [PMID: 39177133 DOI: 10.2174/0109298665310091240809103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
This review explores the burgeoning field of macromolecular polymer-based complexes, highlighting their revolutionary potential for the delivery of nucleotides for therapeutic applications. These complexes, ingeniously crafted from a variety of polymers, offer a unique solution to the challenges of nucleotide delivery, including protection from degradation, targeted delivery, and controlled release. The focus of this report is primarily on the design principles, encapsulation strategies, and biological interactions of these complexes, with an emphasis on their biocompatibility, biodegradability, and ability to form diverse structures, such as nanoparticles and micelles. Significant attention is paid to the latest advancements in polymer science that enable the precise tailoring of these complexes for specific nucleotides, such as DNA, RNA, and siRNA. The review discusses the critical role of surface modifications and the incorporation of targeting ligands in enhancing cellular uptake and ensuring delivery to specific tissues or cells, thereby reducing off-target effects and improving therapeutic efficacy. Clinical applications of these polymer-based delivery systems are thoroughly examined with a focus on their use in treating genetic disorders, cancer, and infectious diseases. The review also addresses the challenges and limitations currently faced in this field, such as scalability, manufacturing complexities, and regulatory hurdles. Overall, this review provides a comprehensive overview of the current state and future prospects of macromolecular polymer-based complexes in nucleotide delivery. It underscores the significance of these systems in advancing the field of targeted therapeutics and their potential to reshape the landscape of medical treatment for a wide range of diseases.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| |
Collapse
|
9
|
Ashraf MZ, Mogilicherla K, Sellamuthu G, Siino V, Levander F, Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). FRONTIERS IN PLANT SCIENCE 2023; 14:1157455. [PMID: 38078109 PMCID: PMC10703158 DOI: 10.3389/fpls.2023.1157455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.
Collapse
Affiliation(s)
- Muhammad Zubair Ashraf
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
10
|
Wang Z, Liu Y, Wang H, Roy A, Liu H, Han F, Zhang X, Lu Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience 2023; 26:107793. [PMID: 37731610 PMCID: PMC10507238 DOI: 10.1016/j.isci.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Ips nitidus is a well-known conifer pest that has contributed significantly to spruce forest disturbance in the Qinghai-Tibet Plateau and seriously threatens the ecological balance of these areas. We report a chromosome-level genome of I. nitidus determined by PacBio and Hi-C technology. Phylogenetic inference showed that it diverged from the common ancestor of I. typographus ∼2.27 mya. Gene family expansion in I. nitidus was characterized by DNA damage repair and energy metabolism, which may facilitate adaptation to high-altitude hypoxia. Interestingly, differential gene expression analysis revealed upregulated genes associated with high-altitude hypoxia adaptation and downregulated genes associated with detoxification after feeding and tunneling in fungal symbiont Ophiostoma bicolor-colonized substrates. Our findings provide evidence of the potential adaptability of I. nitidus to conifer host, high-altitude hypoxia and insight into how fungal symbiont assist in this process. This study enhances our understanding of insect adaptation, symbiosis, and pest management.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 00 Suchdol, Czech Republic
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | | | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
11
|
Roy A, Houot B, Kushwaha S, Anderson P. Impact of transgenerational host switch on gut bacterial assemblage in generalist pest, Spodoptera littoralis (Lepidoptera: Noctuidae). Front Microbiol 2023; 14:1172601. [PMID: 37520373 PMCID: PMC10374326 DOI: 10.3389/fmicb.2023.1172601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/15/2023] [Indexed: 08/01/2023] Open
Abstract
Diet composition is vital in shaping gut microbial assemblage in many insects. Minimal knowledge is available about the influence of transgenerational diet transition on gut microbial community structure and function in polyphagous pests. This study investigated transgenerational diet-induced changes in Spodoptera littoralis larval gut bacteriome using 16S ribosomal sequencing. Our data revealed that 88% of bacterial populations in the S. littoralis larval gut comprise Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes. The first diet transition experiment from an artificial diet (F0) to a plant diet (F1), cabbage and cotton, caused an alteration of bacterial communities in the S. littoralis larval gut. The second transgenerational diet switch, where F1 larvae feed on the same plant in the F2 generation, displayed a significant variation suggesting further restructuring of the microbial communities in the Spodoptera larval gut. F1 larvae were also challenged with the plant diet transition at the F2 generation (cabbage to cotton or cotton to cabbage). After feeding on different plant diets, the microbial assemblage of F2 larvae pointed to considerable differences from other F2 larvae that continued on the same diet. Our results showed that S. littoralis larval gut bacteriome responds rapidly and inexplicably to different diet changes. Further experiments must be conducted to determine the developmental and ecological consequences of such changes. Nevertheless, this study improves our perception of the impact of transgenerational diet switches on the resident gut bacteriome in S. littoralis larvae and could facilitate future research to understand the importance of symbiosis in lepidopteran generalists better.
Collapse
Affiliation(s)
- Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Suchdol, Czechia
| | - Benjamin Houot
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Sandeep Kushwaha
- Department of Bioinformatics, National Institute of Animal Biotechnology (NIAB), Hyderabad, India
| | - Peter Anderson
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
12
|
Singewar K, Fladung M. Double-stranded RNA (dsRNA) technology to control forest insect pests and fungal pathogens: challenges and opportunities. Funct Integr Genomics 2023; 23:185. [PMID: 37243792 PMCID: PMC10220346 DOI: 10.1007/s10142-023-01107-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/29/2023]
Abstract
Climate change alters the seasonal synchronization between plants and respective pests plus pathogens. The geographical infiltration helps to shift their hosts, resulting in novel outbreaks that damage forests and ecology. Traditional management schemes are unable to control such outbreaks, therefore unconventional and competitive governance is needed to manage forest pests and pathogens. RNA interference (RNAi) mediated double-stranded RNA (dsRNA) treatment method can be implemented to protect forest trees. Exogenous dsRNA triggers the RNAi-mediated gene silencing of a vital gene, and suspends protein production, resulting in the death of targeted pathogens and pests. The dsRNA treatment method is successful for many crop insects and fungi, however, studies of dsRNA against forest pests and pathogens are depleting. Pesticides and fungicides based on dsRNA could be used to combat pathogens that caused outbreaks in different parts of the world. Although the dsRNA has proved its potential, the crucial dilemma and risks including species-specific gene selection, and dsRNA delivery methods cannot be overlooked. Here, we summarized the major fungi pathogens and insect pests that have caused outbreaks, their genomic information, and studies on dsRNA fungi-and pesticides. Current challenges and opportunities in dsRNA target decision, delivery using nanoparticles, direct applications, and a new method using mycorrhiza for forest tree protection are discussed. The importance of affordable next-generation sequencing to minimize the impact on non-target species is discussed. We suggest that collaborative research among forest genomics and pathology institutes could develop necessary dsRNA strategies to protect forest tree species.
Collapse
Affiliation(s)
- Kiran Singewar
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927, Großhansdorf, Germany.
| |
Collapse
|
13
|
Mezzetti B, Arpaia S, Baraldi E, Dietz-Pfeilstetter A, Smagghe G, Ventura V, Sweet JB. Editorial: Advances and Challenges of RNAi Based Technologies for Plants-Volume 2. FRONTIERS IN PLANT SCIENCE 2022; 13:930851. [PMID: 35898218 PMCID: PMC9309804 DOI: 10.3389/fpls.2022.930851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Salvatore Arpaia
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA) Research Centre Trisaia - Division Bioenergy, Biorefinery and Green Chemistry, Rotondella, Italy
| | - Elena Baraldi
- DISTAL-Department of Agricultural and Food Science, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antje Dietz-Pfeilstetter
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Braunschweig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Vera Ventura
- Department of Civil Engineering, Architecture, Land, Environment and of Mathematics, University of Brescia, Brescia, Italy
| | - Jeremy B. Sweet
- Sweet Environmental Consultant (SEC), Cambridge, United Kingdom
| |
Collapse
|
14
|
Sellamuthu G, Bílý J, Joga MR, Synek J, Roy A. Identifying optimal reference genes for gene expression studies in Eurasian spruce bark beetle, Ips typographus (Coleoptera: Curculionidae: Scolytinae). Sci Rep 2022; 12:4671. [PMID: 35304502 PMCID: PMC8933438 DOI: 10.1038/s41598-022-08434-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/07/2022] [Indexed: 11/09/2022] Open
Abstract
Eurasian spruce bark beetle (Ips typographus [L.]) causes substantial damage to spruce forests worldwide. Undoubtedly, more aggressive measures are necessary to restrict the enduring loss. Finishing genome sequencing is a landmark achievement for deploying molecular techniques (i.e., RNA interference) to manage this pest. Gene expression studies assist in understanding insect physiology and deployment of molecular approaches for pest management. RT-qPCR is a valuable technique for such studies. However, accuracy and reliability depend on suitable reference genes. With the genome sequence available and the growing requirement of molecular tools for aggressive forest pest management, it is crucial to find suitable reference genes in Ips typographus under different experimental conditions. Hence, we evaluated the stability of twelve candidate reference genes under diverse experimental conditions such as biotic (developmental, sex and tissues) and abiotic factors (i.e., temperature and juvenile hormone treatment) to identify the reference genes. Our results revealed that ribosomal protein 3a (RPS3-a) was the best reference gene across all the experimental conditions, with minor exceptions. However, the stability of the reference gene can differ based on experiments. Nevertheless, present study provides a comprehensive list of reference genes under different experimental conditions for Ips typographus and contributes to "future genomic and functional genomic research".
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jan Bílý
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Mallikarjuna Reddy Joga
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Jiří Synek
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic. .,EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic.
| |
Collapse
|
15
|
Sellamuthu G, Amin S, Bílý J, Synek J, Modlinger R, Sen MK, Chakraborty A, Roy A. Reference Gene Selection for Normalizing Gene Expression in Ips Sexdentatus (Coleoptera: Curculionidae: Scolytinae) Under Different Experimental Conditions. Front Physiol 2021; 12:752768. [PMID: 34777015 PMCID: PMC8580292 DOI: 10.3389/fphys.2021.752768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae) is one of the most destructive and economically important forest pests. A better understanding of molecular mechanisms underlying its adaptation to toxic host compounds may unleash the potential for future management of this pest. Gene expression studies could be considered as one of the key experimental approaches for such purposes. A suitable reference gene selection is fundamental for quantitative gene expression analysis and functional genomics studies in I. sexdentatus. Twelve commonly used reference genes in Coleopterans were screened under different experimental conditions to obtain accurate and reliable normalization of gene expression data. The majority of the 12 reference genes showed a relatively stable expression pattern among developmental stages, tissue-specific, and sex-specific stages; however, some variabilities were observed during varied temperature incubation. Under developmental conditions, the Tubulin beta-1 chain (β-Tubulin) was the most stable reference gene, followed by translation elongation factor (eEF2) and ribosomal protein S3 (RPS3). In sex-specific conditions, RPS3, β-Tubulin, and eEF2 were the most stable reference genes. In contrast, different sets of genes were shown higher stability in terms of expression under tissue-specific conditions, i.e., RPS3 and eEF2 in head tissue, V-ATPase-A and eEF2 in the fat body, V-ATPase-A and eEF2 in the gut. Under varied temperatures, β-Tubulin and V-ATPase-A were most stable, whereas ubiquitin (UbiQ) and V-ATPase-A displayed the highest expression stability after Juvenile Hormone III treatment. The findings were validated further using real-time quantitative reverse transcription PCR (RT-qPCR)-based target gene expression analysis. Nevertheless, the present study delivers a catalog of reference genes under varied experimental conditions for the coleopteran forest pest I. sexdentatus and paves the way for future gene expression and functional genomic studies on this species.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Shan Amin
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia.,Department of Biology, Lund University, Lund, Sweden
| | - Jan Bílý
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jirí Synek
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Roman Modlinger
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Madhab Kumar Sen
- Department of Agroecology and Crop Production, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amrita Chakraborty
- EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Amit Roy
- Excellent Team for Mitigation (ETM), Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia.,EVA 4.0 Unit, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|