1
|
Zhang Q, Luan R, Wang M, Zhang J, Yu F, Ping Y, Qiu L. Research Progress of Spectral Imaging Techniques in Plant Phenotype Studies. PLANTS (BASEL, SWITZERLAND) 2024; 13:3088. [PMID: 39520006 PMCID: PMC11548186 DOI: 10.3390/plants13213088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Spectral imaging technique has been widely applied in plant phenotype analysis to improve plant trait selection and genetic advantages. The latest developments and applications of various optical imaging techniques in plant phenotypes were reviewed, and their advantages and applicability were compared. X-ray computed tomography (X-ray CT) and light detection and ranging (LiDAR) are more suitable for the three-dimensional reconstruction of plant surfaces, tissues, and organs. Chlorophyll fluorescence imaging (ChlF) and thermal imaging (TI) can be used to measure the physiological phenotype characteristics of plants. Specific symptoms caused by nutrient deficiency can be detected by hyperspectral and multispectral imaging, LiDAR, and ChlF. Future plant phenotype research based on spectral imaging can be more closely integrated with plant physiological processes. It can more effectively support the research in related disciplines, such as metabolomics and genomics, and focus on micro-scale activities, such as oxygen transport and intercellular chlorophyll transmission.
Collapse
Affiliation(s)
| | - Rupeng Luan
- Institute of Data Science and Agricultural Economics, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Q.Z.); (J.Z.); (F.Y.); (Y.P.); (L.Q.)
| | - Ming Wang
- Institute of Data Science and Agricultural Economics, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (Q.Z.); (J.Z.); (F.Y.); (Y.P.); (L.Q.)
| | | | | | | | | |
Collapse
|
2
|
Anshori MF, Dirpan A, Sitaresmi T, Rossi R, Farid M, Hairmansis A, Sapta Purwoko B, Suwarno WB, Nugraha Y. An overview of image-based phenotyping as an adaptive 4.0 technology for studying plant abiotic stress: A bibliometric and literature review. Heliyon 2023; 9:e21650. [PMID: 38027954 PMCID: PMC10660044 DOI: 10.1016/j.heliyon.2023.e21650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Improving the tolerance of crop species to abiotic stresses that limit plant growth and productivity is essential for mitigating the emerging problems of global warming. In this context, imaged data analysis represents an effective method in the 4.0 technology era, where this method has the non-destructive and recursive characterization of plant phenotypic traits as selection criteria. So, the plant breeders are helped in the development of adapted and climate-resilient crop varieties. Although image-based phenotyping has recently resulted in remarkable improvements for identifying the crop status under a range of growing conditions, the topic of its application for assessing the plant behavioral responses to abiotic stressors has not yet been extensively reviewed. For such a purpose, bibliometric analysis is an ideal analytical concept to analyze the evolution and interplay of image-based phenotyping to abiotic stresses by objectively reviewing the literature in light of existing database. Bibliometricy, a bibliometric analysis was applied using a systematic methodology which involved data mining, mining data improvement and analysis, and manuscript construction. The obtained results indicate that there are 554 documents related to image-based phenotyping to abiotic stress until 5 January 2023. All document showed the future development trends of image-based phenotyping will be mainly centered in the United States, European continent and China. The keywords analysis major focus to the application of 4.0 technology and machine learning in plant breeding, especially to create the tolerant variety under abiotic stresses. Drought and saline become an abiotic stress often using image-based phenotyping. Besides that, the rice, wheat and maize as the main commodities in this topic. In conclusion, the present work provides information on resolutive interactions in developing image-based phenotyping to abiotic stress, especially optimizing high-throughput sensors in image-based phenotyping for the future development.
Collapse
Affiliation(s)
| | - Andi Dirpan
- Department of Agricultural Technology, Hasanuddin University, Makassar, 90245, Indonesia
- Center of Excellence in Science and Technology on Food Product Diversification, 90245, Makassar, Indonesia
| | - Trias Sitaresmi
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, 16911, Cibinong, Indonesia
| | - Riccardo Rossi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence (UNIFI), Piazzale delle Cascine 18, 50144, Florence, Italy
| | - Muh Farid
- Department of Agronomy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Aris Hairmansis
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, 16911, Cibinong, Indonesia
| | - Bambang Sapta Purwoko
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, 11680, Indonesia
| | - Willy Bayuardi Suwarno
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, 11680, Indonesia
| | - Yudhistira Nugraha
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research and Innovation Agency, 16911, Cibinong, Indonesia
| |
Collapse
|
3
|
Sanaat A, Jamalizadeh M, Khanmohammadi H, Arabi H, Zaidi H. Active-PET: a multifunctional PET scanner with dynamic gantry size featuring high-resolution and high-sensitivity imaging: a Monte Carlo simulation study. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7fd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 07/08/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Organ-specific PET scanners have been developed to provide both high spatial resolution and sensitivity, although the deployment of several dedicated PET scanners at the same center is costly and space-consuming. Active-PET is a multifunctional PET scanner design exploiting the advantages of two different types of detector modules and mechanical arms mechanisms enabling repositioning of the detectors to allow the implementation of different geometries/configurations. Active-PET can be used for different applications, including brain, axilla, breast, prostate, whole-body, preclinical and pediatrics imaging, cell tracking, and image guidance for therapy. Monte Carlo techniques were used to simulate a PET scanner with two sets of high resolution and high sensitivity pixelated Lutetium Oxyorthoscilicate (LSO(Ce)) detector blocks (24 for each group, overall 48 detector modules for each ring), one with large pixel size (4 × 4 mm2) and crystal thickness (20 mm), and another one with small pixel size (2 × 2 mm2) and thickness (10 mm). Each row of detector modules is connected to a linear motor that can displace the detectors forward and backward along the radial axis to achieve variable gantry diameter in order to image the target subject at the optimal/desired resolution and/or sensitivity. At the center of the field-of-view, the highest sensitivity (15.98 kcps MBq−1) was achieved by the scanner with a small gantry and high-sensitivity detectors while the best spatial resolution was obtained by the scanner with a small gantry and high-resolution detectors (2.2 mm, 2.3 mm, 2.5 mm FWHM for tangential, radial, and axial, respectively). The configuration with large-bore (combination of high-resolution and high-sensitivity detectors) achieved better performance and provided higher image quality compared to the Biograph mCT as reflected by the 3D Hoffman brain phantom simulation study. We introduced the concept of a non-static PET scanner capable of switching between large and small field-of-view as well as high-resolution and high-sensitivity imaging.
Collapse
|
4
|
D'Ascenzo N, Xie Q, Antonecchia E, Ciardiello M, Pagnani G, Pisante M. Kinetically Consistent Data Assimilation for Plant PET Sparse Time Activity Curve Signals. FRONTIERS IN PLANT SCIENCE 2022; 13:882382. [PMID: 35941942 PMCID: PMC9356293 DOI: 10.3389/fpls.2022.882382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Time activity curve (TAC) signal processing in plant positron emission tomography (PET) is a frontier nuclear science technique to bring out the quantitative fluid dynamic (FD) flow parameters of the plant vascular system and generate knowledge on crops and their sustainable management, facing the accelerating global climate change. The sparse space-time sampling of the TAC signal impairs the extraction of the FD variables, which can be determined only as averaged values with existing techniques. A data-driven approach based on a reliable FD model has never been formulated. A novel sparse data assimilation digital signal processing method is proposed, with the unique capability of a direct computation of the dynamic evolution of noise correlations between estimated and measured variables, by taking into explicit account the numerical diffusion due to the sparse sampling. The sequential time-stepping procedure estimates the spatial profile of the velocity, the diffusion coefficient and the compartmental exchange rates along the plant stem from the TAC signals. To illustrate the performance of the method, we report an example of the measurement of transport mechanisms in zucchini sprouts.
Collapse
Affiliation(s)
- Nicola D'Ascenzo
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Qingguo Xie
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, China
| | - Emanuele Antonecchia
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Mariachiara Ciardiello
- Department of Medical Physics and Engineering, Istituto Neurologico Mediterraneo, Istituto di Ricovero e Cura a Carattere Scientifico, Pozzilli, Italy
| | - Giancarlo Pagnani
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Michele Pisante
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| |
Collapse
|