1
|
Choi K, Hwang Y, Hong JK, Kang JS. Comparative Plastid Genome and Phylogenomic Analyses of Potamogeton Species. Genes (Basel) 2023; 14:1914. [PMID: 37895263 PMCID: PMC10606940 DOI: 10.3390/genes14101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Potamogetonaceae are aquatic plants divided into six genera. The largest genus in the family is Potamogeton, which is morphologically diverse with many hybrids and polyploids. Potamogetonaceae plastomes were conserved in genome size (155,863 bp-156,669 bp), gene contents (113 genes in total, comprising 79 protein-coding genes and 30 tRNA and 4 rRNA genes), and GC content (36.5%). However, we detected a duplication of the trnH gene in the IR region of the Potamogeton crispus and P. maakianus plastomes. A comparative analysis of Alismatales indicated that the plastomes of Potamogetonaceae, Cymodaceae, and Ruppiaceae have experienced a 6-kb inversion of the rbcL-trnV region and the ndh complex has been lost in the Najas flexilis plastome. Five divergent hotspots (rps16-trnQ, atpF intron, rpoB-trnC, trnC-psbM, and ndhF-rpl32) were identified among the Potamogeton plastomes, which will be useful for species identification. Phylogenetic analyses showed that the family Potamogetonaceae is a well-defined with 100% bootstrap support and divided into two different clades, Potamogeton and Stuckenia. Compared to the nucleotide substitution rates among Alismatales, we found neutral selection in all plastid genes of Potamogeton species. Our results reveal the complete plastome sequences of Potamogeton species, and will be helpful for taxonomic identification, the elucidation of phylogenetic relationships, and the plastome structural analysis of aquatic plants.
Collapse
Affiliation(s)
- KyoungSu Choi
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Yong Hwang
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Jeong-Ki Hong
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
2
|
Hu Y, Sun Y, Zhu QH, Fan L, Li J. Poaceae Chloroplast Genome Sequencing: Great Leap Forward in Recent Ten Years. Curr Genomics 2023; 23:369-384. [PMID: 37920556 PMCID: PMC10173419 DOI: 10.2174/1389202924666221201140603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/02/2022] [Accepted: 10/19/2022] [Indexed: 12/11/2022] Open
Abstract
The first complete chloroplast genome of rice (Oryza sativa) was published in 1989, ushering in a new era of studies of chloroplast genomics in Poaceae. Progresses in Next-Generation Sequencing (NGS) and Third-Generation Sequencing (TGS) technologiesand in the development of genome assembly software, have significantly advanced chloroplast genomics research. Poaceae is one of the most targeted families in chloroplast genome research because of its agricultural, ecological, and economic importance. Over the last 30 years, 2,050 complete chloroplast genome sequences from 40 tribes and 282 genera have been generated, most (97%) of them in the recent ten years. The wealth of data provides the groundwork for studies on species evolution, phylogeny, genetic transformation, and other aspects of Poaceae chloroplast genomes. As a result, we have gained a deeper understanding of the properties of Poaceae chloroplast genomes. Here, we summarize the achievements of the studies of the Poaceae chloroplast genomes and envision the challenges for moving the area ahead.
Collapse
Affiliation(s)
- Yiyu Hu
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yanqing Sun
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO, Agriculture and Food, Canberra, ACT 2601, Australia
| | - Longjiang Fan
- Institute of Crop Science & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Jianhua Li
- Department of Rehabilitation Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Li H, Guo Q, Xu L, Gao H, Liu L, Zhou X. CPJSdraw: analysis and visualization of junction sites of chloroplast genomes. PeerJ 2023; 11:e15326. [PMID: 37193025 PMCID: PMC10182761 DOI: 10.7717/peerj.15326] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/10/2023] [Indexed: 05/18/2023] Open
Abstract
Background Chloroplast genomes are usually circular molecules, and most of them are tetrad structures with two inverted repeat (IR) regions, a large single-copy region, and a small single-copy region. IR contraction and expansion are among the genetic diversities during the evolution of plant chloroplast genomes. The only previously released tool for the visualization of junction sites of the regions does not consider the diversity of the starting point of genomes, which leads to incorrect results or even no results for the examination of IR contraction and expansion. Results In this work, a new tool named CPJSdraw was developed for visualizing the junction sites of chloroplast genomes. CPJSdraw can format the starting point of the irregular linearized genome, correct the junction sites of IR and single-copy regions, display the tetrad structure, visualize the junction sites of any number (≥1) of chloroplast genomes, show the transcription direction of genes adjacent to junction sites, and indicate the IR expansion or contraction of chloroplast genomes. Conclusions CPJSdraw is a software that is universal and reliable in analysis and visualization of IR expansion or contraction of chloroplast genomes. CPJSdraw has more accurate analysis and more complete functions when compared with previously released tool. CPJSdraw as a perl package and tested data are available at http://dx.doi.org/10.5281/zenodo.7669480 for English users. In addition, an online version with a Chinese interface is available at http://cloud.genepioneer.com:9929/#/tool/alltool/detail/335.
Collapse
Affiliation(s)
- Huie Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qiqiang Guo
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
| | - Lei Xu
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| | - Haidong Gao
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| | - Lei Liu
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| | - Xiangyang Zhou
- Nanjing Genepioneer Biotechnologies Co., Ltd, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Varani AM, Silva SR, Lopes S, Barbosa JBF, Oliveira D, Corrêa MA, Moraes AP, Miranda VF, Prosdocimi F. The complete organellar genomes of the entheogenic plant Psychotria viridis (Rubiaceae), a main component of the ayahuasca brew. PeerJ 2022; 10:e14114. [PMID: 36275467 PMCID: PMC9586082 DOI: 10.7717/peerj.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
Psychotria viridis (Rubioideae: Rubiaceae), popularly known as chacrona, is commonly found as a shrub in the Amazon region and is well-known to produce psychoactive compounds, such as the N,N-dimethyltryptamine (DMT). Together with the liana Banisteropsis caapi, P. viridis is one of the main components of the Amerindian traditional, entheogenic beverage known as ayahuasca. In this work, we assembled and annotated the organellar genomes (ptDNA and mtDNA), presenting the first genomics resources for this species. The P. viridis ptDNA exhibits 154,106 bp, encoding all known ptDNA gene repertoire found in angiosperms. The Psychotria genus is a complex paraphyletic group, and according to phylogenomic analyses, P. viridis is nested in the Psychotrieae clade. Comparative ptDNA analyses indicate that most Rubiaceae plastomes present conserved ptDNA structures, often showing slight differences at the junction sites of the major four regions (LSC-IR-SSC). For the mitochondrion, assembly graph-based analysis supports a complex mtDNA organization, presenting at least two alternative and circular mitogenomes structures exhibiting two main repeats spanning 24 kb and 749 bp that may symmetrically isomerize the mitogenome into variable arrangements and isoforms. The circular mtDNA sequences (615,370 and 570,344 bp) encode almost all plant mitochondrial genes (except for the ccmC, rps7, rps10, rps14, rps19, rpl2 and rpl16 that appears as pseudogenes, and the absent genes sdh3, rps2, rsp4, rsp8, rps11, rpl6, and rpl10), showing slight variations related to exclusive regions, ptDNA integration, and relics of previous events of LTR-RT integration. The detection of two mitogenomes haplotypes is evidence of heteroplasmy as observed by the complex organization of the mitochondrial genome using graph-based analysis. Taken together, these results elicit the primary insights into the genome biology and evolutionary history of Psychotria viridis and may be used to aid strategies for conservation of this sacred, entheogenic species.
Collapse
Affiliation(s)
- Alessandro M. Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Saura R. Silva
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Simone Lopes
- Laboratory of Genetics and Molecular Biology, State University of Paraíba (UEPB), Campina Grande, Paraíba, Brazil
| | | | - Danilo Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Corrêa
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Moraes
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), São Bernardo do Campo, São Paulo, Brazil
| | - Vitor F.O. Miranda
- School of Agricultural and Veterinarian Sciences, Department of Biology, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Wang ZX, Wang DJ, Yi TS. Does IR-loss promote plastome structural variation and sequence evolution? FRONTIERS IN PLANT SCIENCE 2022; 13:888049. [PMID: 36247567 PMCID: PMC9560873 DOI: 10.3389/fpls.2022.888049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Plastids are one of the main distinguishing characteristics of the plant cell. The plastid genome (plastome) of most autotrophic seed plants possesses a highly conserved quadripartite structure containing a large single-copy (LSC) and a small single-copy (SSC) region separated by two copies of the inverted repeat (termed as IRA and IRB). The IRs have been inferred to stabilize the plastid genome via homologous recombination-induced repair mechanisms. IR loss has been documented in seven autotrophic flowering plant lineages and two autotrophic gymnosperm lineages, and the plastomes of these species (with a few exceptions) are rearranged to a great extent. However, some plastomes containing normal IRs also show high structural variation. Therefore, the role of IRs in maintaining plastome stability is still controversial. In this study, we first integrated and compared genome structure and sequence evolution of representative plastomes of all nine reported IR-lacking lineages and those of their closest relative(s) with canonical inverted repeats (CRCIRs for short) to explore the role of the IR in maintaining plastome structural stability and sequence evolution. We found the plastomes of most IR-lacking lineages have experienced significant structural rearrangement, gene loss and duplication, accumulation of novel small repeats, and acceleration of synonymous substitution compared with those of their CRCIRs. However, the IR-lacking plastomes show similar structural variation and sequence evolution rate, and even less rearrangement distance, dispersed repeat number, tandem repeat number, indels frequency and GC3 content than those of IR-present plastomes with variation in Geraniaceae. We argue that IR loss is not a driver of these changes but is instead itself a consequence of other processes that more broadly shape both structural and sequence-level plastome evolution.
Collapse
Affiliation(s)
- Zi-Xun Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Ding-Jie Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|