1
|
Li H, Li K, Li H, Yang C, Perera G, Wang G, Lyu S, Hua L, Rehman SU, Zhang Y, Ayliffe M, Yu H, Chen S. Mapping and Candidate Gene Analysis of an All-Stage Stem Rust Resistance Gene in Durum Wheat Landrace PI 94701. PLANTS (BASEL, SWITZERLAND) 2024; 13:2197. [PMID: 39204633 PMCID: PMC11359134 DOI: 10.3390/plants13162197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem rust, poses a significant threat to global wheat production. Genetic resistance offers a cost-effective and sustainable solution. The durum wheat landrace PI 94701 was previously hypothesized to carry two stem rust resistance (Sr) genes, but their chromosomal locations were unknown. In this study, we mapped and characterized an all-stage Sr gene in PI 94701, temporarily designated as SrPI94701. In seedling tests, SrPI94701 was effective against all six Pgt races tested. Using a large segregating population, we mapped SrPI94701 on chromosome arm 5BL within a 0.17-cM region flanked by markers pku69124 and pku69228, corresponding to 1.04 and 2.15 Mb genomic regions in the Svevo and Chinese Spring reference genomes. Within the candidate region, eight genes exhibited differential expression between the Pgt-inoculated resistant and susceptible plants. Among them, two nucleotide-binding leucine-rich repeat (NLR) genes, TraesCS5B03G1334700 and TraesCS5B03G1335100, showed high polymorphism between the parental lines and were upregulated in Pgt-inoculated resistant plants. However, the flanking and completely linked markers developed in this study could not accurately predict the presence of SrPI94701 in a survey of 104 wheat accessions. SrPI94701 is a promising resource for enhancing stem rust resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongyu Li
- National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China;
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Geetha Perera
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Shams ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| | - Yazhou Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Michael Ayliffe
- CSIRO Agriculture and Food, GPO Box 1700, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Haitao Yu
- Wheat Research Institute, Weifang Academy of Agricultural Sciences, Weifang 261071, China
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China; (K.L.); (H.L.)
| |
Collapse
|
2
|
Xu B, Shen T, Chen H, Li H, Rehman SU, Lyu S, Hua L, Wang G, Zhang C, Li K, Li H, Lan C, Chen GY, Hao M, Chen S. Mapping and characterization of rust resistance genes Lr53 and Yr35 introgressed from Aegilops species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:113. [PMID: 38678511 PMCID: PMC11056342 DOI: 10.1007/s00122-024-04616-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
KEY MESSAGE The rust resistance genes Lr53 and Yr35 were introgressed into bread wheat from Aegilops longissima or Aegilops sharonensis or their S-genome containing species and mapped to the telomeric region of chromosome arm 6BS. Wheat leaf and stripe rusts are damaging fungal diseases of wheat worldwide. Breeding for resistance is a sustainable approach to control these two foliar diseases. In this study, we used SNP analysis, sequence comparisons, and cytogenetic assays to determine that the chromosomal segment carrying Lr53 and Yr35 was originated from Ae.longissima or Ae. sharonensis or their derived species. In seedling tests, Lr53 conferred strong resistance against all five Chinese Pt races tested, and Yr35 showed effectiveness against Pst race CYR34 but susceptibility to race CYR32. Using a large population (3892 recombinant gametes) derived from plants homozygous for the ph1b mutation obtained from the cross 98M71 × CSph1b, both Lr53 and Yr35 were successfully mapped to a 6.03-Mb telomeric region of chromosome arm 6BS in the Chinese Spring reference genome v1.1. Co-segregation between Lr53 and Yr35 was observed within this large mapping population. Within the candidate region, several nucleotide-binding leucine-rich repeat genes and protein kinases were identified as candidate genes. Marker pku6B3127 was completely linked to both genes and accurately predicted the absence or presence of alien segment harboring Lr53 and Yr35 in 87 tetraploid and 149 hexaploid wheat genotypes tested. We developed a line with a smaller alien segment (< 6.03 Mb) to reduce any potential linkage drag and demonstrated that it conferred resistance levels similar to those of the original donor parent 98M71. The newly developed introgression line and closely linked PCR markers will accelerate the deployment of Lr53 and Yr35 in wheat breeding programs.
Collapse
Affiliation(s)
- Binyang Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Tao Shen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100000, China
| | - Hong Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Shams Ur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Shikai Lyu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kairong Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Caixia Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guo-Yue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Ming Hao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
| |
Collapse
|
3
|
Zhang J, Nirmala J, Chen S, Jost M, Steuernagel B, Karafiatova M, Hewitt T, Li H, Edae E, Sharma K, Hoxha S, Bhatt D, Antoniou-Kourounioti R, Dodds P, Wulff BBH, Dolezel J, Ayliffe M, Hiebert C, McIntosh R, Dubcovsky J, Zhang P, Rouse MN, Lagudah E. Single amino acid change alters specificity of the multi-allelic wheat stem rust resistance locus SR9. Nat Commun 2023; 14:7354. [PMID: 37963867 PMCID: PMC10645757 DOI: 10.1038/s41467-023-42747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Most rust resistance genes thus far isolated from wheat have a very limited number of functional alleles. Here, we report the isolation of most of the alleles at wheat stem rust resistance gene locus SR9. The seven previously reported resistance alleles (Sr9a, Sr9b, Sr9d, Sr9e, Sr9f, Sr9g, and Sr9h) are characterised using a synergistic strategy. Loss-of-function mutants and/or transgenic complementation are used to confirm Sr9b, two haplotypes of Sr9e (Sr9e_h1 and Sr9e_h2), Sr9g, and Sr9h. Each allele encodes a highly related nucleotide-binding site leucine-rich repeat (NB-LRR) type immune receptor, containing an unusual long LRR domain, that confers resistance to a unique spectrum of isolates of the wheat stem rust pathogen. The only SR9 protein effective against stem rust pathogen race TTKSK (Ug99), SR9H, differs from SR9B by a single amino acid. SR9B and SR9G resistance proteins are also distinguished by only a single amino acid. The SR9 allelic series found in the B subgenome are orthologs of wheat stem rust resistance gene Sr21 located in the A subgenome with around 85% identity in protein sequences. Together, our results show that functional diversification of allelic variants at the SR9 locus involves single and multiple amino acid changes that recognize isolates of wheat stem rust.
Collapse
Affiliation(s)
- Jianping Zhang
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
- State Key Laboratory of Wheat and Maize Crop Science, National Wheat Innovation Centre, Centre for Crop Genome Engineering, and College of Agronomy, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Shisheng Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - Matthias Jost
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | | | - Mirka Karafiatova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 77900, Olomouc, Czech Republic
| | - Tim Hewitt
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Hongna Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong, 261000, China
| | - Erena Edae
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Keshav Sharma
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA
| | - Sami Hoxha
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Dhara Bhatt
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Rea Antoniou-Kourounioti
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Peter Dodds
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Centre for Desert Agriculture, KAUST, Thuwal, 23955-6900, Saudi Arabia
| | - Jaroslav Dolezel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, 77900, Olomouc, Czech Republic
| | | | - Colin Hiebert
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Robert McIntosh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia.
| | - Matthew N Rouse
- Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory, St. Paul, MN, 55108, USA.
| | - Evans Lagudah
- CSIRO Agriculture & Food, Canberra, ACT, 2601, Australia.
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
4
|
Ren Y, Sun X, Nie J, Guo P, Wu X, Zhang Y, Gao M, Niaz M, Yang X, Sun C, Zhang N, Chen F. Mapping QTL conferring flag leaf senescence in durum wheat cultivars. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:66. [PMID: 37564974 PMCID: PMC10409934 DOI: 10.1007/s11032-023-01410-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
Flag leaf senescence is a critical factor affecting the yield and quality of wheat. The aim of this study was to identify QTLs associated with flag leaf senescence in an F10 recombinant inbred line population derived from durum wheats UC1113 and Kofa. Bulked segregant analysis using the wheat 660K SNP array identified 3225 SNPs between extreme-phenotype bulks, and the differential SNPs were mainly clustered on chromosomes 1A, 1B, 3B, 5A, 5B, and 7A. BSR-Seq indicated that the significant SNPs were mainly located in two intervals of 354.0-389.0 Mb and 8.0-15.0 Mb on 1B and 3B, respectively. Based on the distribution of significant SNPs on chromosomes 1B and 3B, a total of 109 insertion/deletion (InDel) markers were developed, and 8 of them were finally used to map QTL in UC1113/Kofa population for flag leaf senescence. Inclusive composite interval mapping identified two major QTL in marker intervals Mar2005-Mar2116 and Mar207-Mar289, explaining 14.2-15.4% and 31.4-68.6% of the phenotypic variances across environments, respectively. Using BSR-Seq, gene expression and sequence analysis, the TraesCS1B02G211600 and TraesCS3B02G023000 were identified as candidate senescence-associated genes. This study has potential to be used in cloning key genes for flag leaf senescence and provides available molecular markers for genotyping and marker-assisted selection breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01410-3.
Collapse
Affiliation(s)
- Yan Ren
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaonan Sun
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Jingyun Nie
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Peng Guo
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xiaohui Wu
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Mengjuan Gao
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Xia Yang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Ning Zhang
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science/Agronomy College/CIMMYT-China Wheat and Maize Joint Research Center, Henan Agricultural University, Zhengzhou, 450046 China
| |
Collapse
|
5
|
Li H, Luo J, Zhang W, Hua L, Li K, Wang J, Xu B, Yang C, Wang G, Rouse MN, Dubcovsky J, Chen S. High-resolution mapping of SrTm4, a recessive resistance gene to wheat stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:120. [PMID: 37103626 PMCID: PMC10140103 DOI: 10.1007/s00122-023-04369-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/17/2023] [Indexed: 05/13/2023]
Abstract
KEY MESSAGE The diploid wheat recessive stem rust resistance gene SrTm4 was fine-mapped to a 754-kb region on chromosome arm 2AmL and potential candidate genes were identified. Race Ug99 of Puccinia graminis f. sp. tritici (Pgt), the causal agent of wheat stem (or black) rust is one of the most serious threats to global wheat production. The identification, mapping, and deployment of effective stem rust resistance (Sr) genes are critical to reduce this threat. In this study, we generated SrTm4 monogenic lines and found that this gene confers resistance to North American and Chinese Pgt races. Using a large mapping population (9522 gametes), we mapped SrTm4 within a 0.06 cM interval flanked by marker loci CS4211 and 130K1519, which corresponds to a 1.0-Mb region in the Chinese Spring reference genome v2.1. A physical map of the SrTm4 region was constructed with 11 overlapping BACs from the resistant Triticum monococcum PI 306540. Comparison of the 754-kb physical map with the genomic sequence of Chinese Spring and a discontinuous BAC sequence of DV92 revealed a 593-kb chromosomal inversion in PI 306540. Within the candidate region, we identified an L-type lectin-domain containing receptor kinase (LLK1), which was disrupted by the proximal inversion breakpoint, as a potential candidate gene. Two diagnostic dominant markers were developed to detect the inversion breakpoints. In a survey of T. monococcum accessions, we identified 10 domesticated T. monococcum subsp. monococcum genotypes, mainly from the Balkans, carrying the inversion and showing similar mesothetic resistant infection types against Pgt races. The high-density map and tightly linked molecular markers developed in this study are useful tools to accelerate the deployment of SrTm4-mediated resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Hongna Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Jing Luo
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Wenjun Zhang
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Lei Hua
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Kun Li
- Department of Plant Sciences, University of California, Davis, CA95616, USA
| | - Jian Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Binyang Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chen Yang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guiping Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China
| | - Matthew N Rouse
- US Department of Agriculture-Agricultural Research Service, Cereal Disease Laboratory and Department of Plant Pathology, University of Minnesota, St. Paul, MN, 55108, USA.
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shisheng Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, 261325, Shandong, China.
| |
Collapse
|
6
|
Sun H, Wang Z, Wang R, Chen S, Ni X, Gao F, Zhang Y, Xu Y, Wu X, Li T. Identification of wheat stem rust resistance genes in wheat cultivars from Hebei province, China. FRONTIERS IN PLANT SCIENCE 2023; 14:1156936. [PMID: 37063217 PMCID: PMC10098322 DOI: 10.3389/fpls.2023.1156936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Wheat stem rust is caused by Puccinia graminis f. sp. tritici. This major disease has been effectively controlled via resistance genes since the 1970s. The appearance and spread of new races of P. graminis f. sp. tritici (eg., Ug99, TKTTF, and TTRTF) have renewed the interest in identifying the resistance gene and breeding cultivars resistant to wheat stem rust. In this study, gene postulation, pedigree analysis, and molecular detection were used to determine the presence of stem rust resistance genes in 65 commercial wheat cultivars from Hebei Province. In addition, two predominant races 21C3CTHTM and 34MRGQM were used to evaluate the resistance of these cultivars at the adult-plant stage in 2021-2022. The results revealed that 6 Sr genes (namely, Sr5, Sr17, Sr24, Sr31, Sr32, Sr38, and SrTmp), either singly or in combination, were identified in 46 wheat cultivars. Overall, 37 wheat cultivars contained Sr31. Sr5 and Sr17 were present in 3 and 3 cultivars, respectively. Gao 5218 strong gluten, Jie 13-Ji 7369, and Kenong 1006 contained Sr24, Sr32, and Sr38, respectively. No wheat cultivar contained Sr25 and Sr26. In total, 50 (76.9%) wheat cultivars were resistant to all tested races of P. graminis f. sp. tritici in field test in 2021-2022. This study is important for breeding wheat cultivars with resistance to stem rust.
Collapse
Affiliation(s)
- Huiyan Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ziye Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Rui Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Si Chen
- Institute of Industrial Crops, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xinyu Ni
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Fu Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yazhao Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yiwei Xu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Xianxin Wu
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Tianya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Evdokimov MG, Yusov VS, Kiryakova MN, Meshkova LV, Pakhotina IV, Glushakov DA. Promising genetic sources for the creation of varieties of durum spring wheat in Western Siberia. Vavilovskii Zhurnal Genet Selektsii 2022; 26:609-621. [PMID: 36532626 PMCID: PMC9727540 DOI: 10.18699/vjgb-22-75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/13/2022] [Accepted: 07/29/2022] [Indexed: 03/14/2024] Open
Abstract
The study, expansion and preservation of the genetic diversity of the source material, and its purposeful use in hybridization is the basis for the creation of adaptive varieties of durum spring wheat that are resistant to biotic and abiotic factors of the environment of Western Siberia. The objects of research were samples of durum spring wheat. Over the years of research (2000-2020), about 3 thousand samples were worked out from the world gene pool of various countries and regions: from the collection of the VIR, the gene pool from Mexico (CIMMYT) within the framework of the agreement and cooperation program (2000-2007), from 2000 to the present time under the program of the Kazakh-Siberian Spring Wheat Breeding Network (KASIB), from other scientif ic institutions of Russia in exchange activities. Using generally accepted techniques, the obtained material was studied for a complex of traits: yield, adaptability, grain quality, resistance to diseases. In the cycle of studying the gene pool from CIMMYT, 50 genotypes were identif ied in terms of yield at the level of the Omskaja jantarnaja standard, 276 grains by test weight, 131 samples by pasta color, 131 samples by resistance to hard smut, and 112 by resistance to powdery mildew. Almost all samples were not affected by leaf rust. The study set showed high sensitivity to extreme conditions and most forms of interest in quality and disease resistance were low-productive in our environment. In KASIB nurseries, 29 samples were identif ied in terms of yield and adaptability, 29 samples in terms of grain quality, 21 in terms of resistance to diseases, including 8 resistant to stem rust. In the set of varieties received from the VIR, 15 genotypes were adaptive, 16 had high grain quality, 11 were resistant to stem rust. In the breeding material, 17 samples of the local population resistant to stem rust (6 of them were comprehensively resistant) and 25 race-resistant to Ug99 were identif ied. The genotypes identif ied as a result of research are of interest as sources of valuable traits.
Collapse
Affiliation(s)
| | - V S Yusov
- Omsk Agrarian Scientific Center, Omsk, Russia
| | | | | | | | | |
Collapse
|
8
|
Genievskaya Y, Pecchioni N, Laidò G, Anuarbek S, Rsaliyev A, Chudinov V, Zatybekov A, Turuspekov Y, Abugalieva S. Genome-Wide Association Study of Leaf Rust and Stem Rust Seedling and Adult Resistances in Tetraploid Wheat Accessions Harvested in Kazakhstan. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151904. [PMID: 35893608 PMCID: PMC9329756 DOI: 10.3390/plants11151904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 05/05/2023]
Abstract
Leaf rust (LR) and stem rust (SR) are diseases increasingly impacting wheat production worldwide. Fungal pathogens producing rust diseases in wheat may cause yield losses of up to 50−60%. One of the most effective methods for preventing such losses is the development of resistant cultivars with high yield potential. This goal can be achieved through complex breeding studies, including the identification of key genetic factors controlling rust disease resistance. The objective of this study was to identify sources of tetraploid wheat resistance to LR and SR races, both at the seedling growth stage in the greenhouse and at the adult plant stage in field experiments, under the conditions of the North Kazakhstan region. A panel consisting of 193 tetraploid wheat accessions was used in a genome-wide association study (GWAS) for the identification of quantitative trait loci (QTLs) associated with LR and SR resistance, using 16,425 polymorphic single-nucleotide polymorphism (SNP) markers in the seedling and adult stages of plant development. The investigated panel consisted of seven tetraploid subspecies (Triticum turgidum ssp. durum, ssp. turanicum, ssp. turgidum, ssp. polonicum, ssp. carthlicum, ssp. dicoccum, and ssp. dicoccoides). The GWAS, based on the phenotypic evaluation of the tetraploid collection’s reaction to the two rust species at the seedling (in the greenhouse) and adult (in the field) stages, revealed 38 QTLs (p < 0.001), comprising 17 for LR resistance and 21 for SR resistance. Ten QTLs were associated with the reaction to LR at the seedling stage, while six QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. Eleven QTLs were associated with SR response at the seedling stage, while nine QTLs were at the adult plant stage and one QTL was at both the seedling and adult stages. A comparison of these results with previous LR and SR studies indicated that 11 of the 38 QTLs are presumably novel loci. The QTLs identified in this work can potentially be used for marker-assisted selection of tetraploid and hexaploid wheat for the breeding of new LR- and SR-resistant cultivars.
Collapse
Affiliation(s)
- Yuliya Genievskaya
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Giovanni Laidò
- Research Centre for Cereal and Industrial Crops, 71122 Foggia, Italy; (N.P.); (G.L.)
| | - Shynar Anuarbek
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Aralbek Rsaliyev
- Laboratory of Phytosanitary Safety, Research Institute of Biological Safety Problems, Gvardeisky 080409, Kazakhstan;
| | - Vladimir Chudinov
- Breeding Department, Karabalyk Agricultural Experimental Station, Nauchnoe 110908, Kazakhstan;
| | - Alibek Zatybekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
| | - Yerlan Turuspekov
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Saule Abugalieva
- Laboratory of Molecular Genetics, Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan; (Y.G.); (S.A.); (A.Z.); (Y.T.)
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
- Correspondence: ; Tel.: +7-727-394-8006
| |
Collapse
|