1
|
Amjadi Z, Hamzehzarghani H, Rodriguez VM, Huang YJ, Farahbakhsh F. Studying temperature's impact on Brassica napus resistance to identify key regulatory mechanisms using comparative metabolomics. Sci Rep 2024; 14:19865. [PMID: 39191882 PMCID: PMC11350117 DOI: 10.1038/s41598-024-68345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the effects of temperature on Brassica napus (canola) resistance to Leptosphaeria maculans (LM), the causal agent of blackleg disease, metabolic profiles of LM infected resistant (R) and susceptible (S) canola cultivars at 21 °C and 28 °C were analyzed. Metabolites were detected in cotyledons of R and S plants at 48- and 120-h post-inoculation with LM using UPLC-QTOF/MS. The mock-inoculated plants were used as controls. Some of the resistance-related specific pathways, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and aminoacyl-tRNA biosynthesis, were down-regulated in S plants but up-regulated in R plants at 21 °C. However, some of these pathways were down-regulated in R plants at 28 °C. Amino acid metabolism, lipid metabolism, alkaloid biosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis were the pathways linked to combined heat and pathogen stresses. By using network analysis and enrichment analysis, these pathways were identified as important. The pathways of carotenoid biosynthesis, pyrimidine metabolism, and lysine biosynthesis were identified as unique mechanisms related to heat stress and may be associated with the breakdown of resistance against the pathogen. The increased susceptibility of R plants at 28 °C resulted in the down-regulation of signal transduction pathway components and compromised signaling, particularly during the later stages of infection. Deactivating LM-specific signaling networks in R plants under heat stress may result in compatible responses and deduction in signaling metabolites, highlighting global warming challenges in crop disease control.
Collapse
Affiliation(s)
- Zahra Amjadi
- Plant Protection Department, Shiraz University, Shiraz, Iran
| | | | - Víctor Manuel Rodriguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain
| | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Farideh Farahbakhsh
- Plant Protection Research Department, Fars Agricultural and Natural Resources and Education Center, Agricultural Research, Education, and Extension Organization (AREEO), Darab, Iran
| |
Collapse
|
2
|
Pfeifer L, Mueller KK, Utermöhlen J, Erdt F, Zehge JBJ, Schubert H, Classen B. The cell walls of different Chara species are characterized by branched galactans rich in 3-O-methylgalactose and absence of AGPs. PHYSIOLOGIA PLANTARUM 2023; 175:e13989. [PMID: 37616003 DOI: 10.1111/ppl.13989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Streptophyte algae are the closest relatives to land plants; their latest common ancestor performed the most drastic adaptation in plant evolution around 500 million years ago: the conquest of land. Besides other adaptations, this step required changes in cell wall composition. Current knowledge on the cell walls of streptophyte algae and especially on the presence of arabinogalactan-proteins (AGPs), important signalling molecules in all land plants, is limited. To get deeper insights into the cell walls of streptophyte algae, especially in Charophyceae, we performed sequential cell wall extractions of four Chara species. The three species Chara globularis, Chara subspinosa and Chara tomentosa revealed comparable cell wall compositions, with pectins, xylans and xyloglucans, whereas Chara aspera stood out with higher amounts of uronic acids in the pectic fractions and lack of reactivity with antibodies binding to xylan- and xyloglucan epitopes. Search for AGPs in the four Chara species and in Nitellopsis obtusa revealed the presence of galactans with pyranosidic galactose in 1,3-, 1,6- and 1,3,6-linkage, which are typical galactan motifs in land plant AGPs. A unique feature of these branched galactans was high portions of 3-O-methylgalactose. Only Nitellopsis contained substantial amounts of arabinose A bioinformatic search for prolyl-4-hydroxylases, involved in the biosynthesis of AGPs, revealed one possible functional sequence in the genome of Chara braunii, but no hydroxyproline could be detected in the four Chara species or in Nitellopsis obtusa. We conclude that AGPs that is typical for land plants are absent, at least in these members of the Charophyceae.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kim-Kristine Mueller
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jon Utermöhlen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Felicitas Erdt
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jean Bastian Just Zehge
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Hendrik Schubert
- Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Birgit Classen
- Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
3
|
Bohlender LL, Parsons J, Hoernstein SNW, Bangert N, Rodríguez-Jahnke F, Reski R, Decker EL. Unexpected Arabinosylation after Humanization of Plant Protein N-Glycosylation. Front Bioeng Biotechnol 2022; 10:838365. [PMID: 35252146 PMCID: PMC8894861 DOI: 10.3389/fbioe.2022.838365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 02/03/2023] Open
Abstract
As biopharmaceuticals, recombinant proteins have become indispensable tools in medicine. An increasing demand, not only in quantity but also in diversity, drives the constant development and improvement of production platforms. The N-glycosylation pattern on biopharmaceuticals plays an important role in activity, serum half-life and immunogenicity. Therefore, production platforms with tailored protein N-glycosylation are of great interest. Plant-based systems have already demonstrated their potential to produce pharmaceutically relevant recombinant proteins, although their N-glycan patterns differ from those in humans. Plants have shown great plasticity towards the manipulation of their glycosylation machinery, and some have already been glyco-engineered in order to avoid the attachment of plant-typical, putatively immunogenic sugar residues. This resulted in complex-type N-glycans with a core structure identical to the human one. Compared to humans, plants lack the ability to elongate these N-glycans with β1,4-linked galactoses and terminal sialic acids. However, these modifications, which require the activity of several mammalian enzymes, have already been achieved for Nicotiana benthamiana and the moss Physcomitrella. Here, we present the first step towards sialylation of recombinant glycoproteins in Physcomitrella, human β1,4-linked terminal N-glycan galactosylation, which was achieved by the introduction of a chimeric β1,4-galactosyltransferase (FTGT). This chimeric enzyme consists of the moss α1,4-fucosyltransferase transmembrane domain, fused to the catalytic domain of the human β1,4-galactosyltransferase. Stable FTGT expression led to the desired β1,4-galactosylation. However, additional pentoses of unknown identity were also observed. The nature of these pentoses was subsequently determined by Western blot and enzymatic digestion followed by mass spectrometric analysis and resulted in their identification as α-linked arabinoses. Since a pentosylation of β1,4-galactosylated N-glycans was reported earlier, e.g., on recombinant human erythropoietin produced in glyco-engineered Nicotiana tabacum, this phenomenon is of a more general importance for plant-based production platforms. Arabinoses, which are absent in humans, may prevent the full humanization of plant-derived products. Therefore, the identification of these pentoses as arabinoses is important as it creates the basis for their abolishment to ensure the production of safe biopharmaceuticals in plant-based systems.
Collapse
Affiliation(s)
- Lennard L. Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Nina Bangert
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Fernando Rodríguez-Jahnke
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- *Correspondence: Eva L. Decker,
| |
Collapse
|