1
|
Wu YZ, Wang J, Hu YH, Sun QS, Geng R, Ding LN. Antimicrobial Peptides: Classification, Mechanism, and Application in Plant Disease Resistance. Probiotics Antimicrob Proteins 2025; 17:1432-1446. [PMID: 39969681 DOI: 10.1007/s12602-025-10478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
Antimicrobial peptides (AMPs) are a class of alkaline, small molecules found widely in nature. This article surveys the classifications of AMPs, delving into their modes of action and their role in controlling significant plant diseases caused by bacteria, viruses, and fungi. It also explores the prospects and challenges in this field, aiming to provide insights for enhancing crop disease resistance, ensuring food security, deepening the understanding of pathogen mechanisms, and protecting ecological balance.
Collapse
Affiliation(s)
- Yuan-Zhen Wu
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Jin Wang
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Ying-Hui Hu
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Qi-Shuo Sun
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Rui Geng
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China
| | - Li-Na Ding
- College of Life Sciences, Jiangsu University, Zhenjiang, 212000, China.
| |
Collapse
|
2
|
Ku CY, Guo LR, Cheng FC, Kuo CY, Karim AF, Hardiansyah MY, Chang YC, Chen YF, Chung YY, Cheng CP. The levels of pattern-triggered immunity in the root and stembase of tomato cultivars positively correlate with the resistance to Ralstonia solanacearum. BOTANICAL STUDIES 2024; 65:34. [PMID: 39589656 PMCID: PMC11599649 DOI: 10.1186/s40529-024-00441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/11/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Bacterial wilt (BW), caused by Ralstonia solanacearum (Rs), is one of the most destructive diseases impacting a wide range of crops globally. The infection process is complex involving intricate interactions between the plant and Rs. Managing BW is challenging, and crop breeding remains the most effective strategy for disease control. Resistance to BW in crops is primarily associated with quantitative trait loci (QTLs), which are believed to correlate with the simultaneous activation of multiple defense mechanisms against pathogens. This study aimed to clarify the nature of BW resistance and determine whether pattern-triggered immunity (PTI) plays a role in this resistance. RESULTS PTI can be triggered in tomato roots and stembases by an Rs hrpG- mutant and by the cell wall extract (PiCWE) from the root-infected beneficial fungus Piriformospora indica (Pi). Among tomato plants with varying resistance levels to Rs, BW-resistant (BWR) and moderate-resistant (BWMR) cultivars exhibited higher levels of root and stembase PTI in response to Rs hrpG- inoculation and PiCWE treatment than in BW-susceptible (BWS) cultivars. Additionally, BWR and BWMR cultivars showed enhanced leaf PTI after inoculation with a Pseudomonas syringae pv. tomato (Pst) hrcC- mutant. The BWR cultivar Hawaii 7996 (H7996) also demonstrated high tolerance to several leaf pathogens. CONCLUSIONS Efficient systems for the analyses of PTI responses in tomato roots, stembases and leaves in response to patterns derived from root-infected pathogenic and beneficial microorganisms have been established. The levels of PTI in roots, stembases, and leaves are positively correlated with BW resistance in tomato plants. The BWR cultivar H7996 also shows tolerance to various leaf pathogens. This study reveals a significant correlation between tomato PTI and resistance to Rs, provides valuable insights into the nature of BW resistance, and offers critical information for tomato breeding.
Collapse
Affiliation(s)
- Chiao-Yu Ku
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Li-Ren Guo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Feng-Chi Cheng
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-You Kuo
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Andre Fortunatus Karim
- Global Agriculture Technology and Genomic Science Master Program, National Taiwan University, Taipei, Taiwan
| | - Muhammad Yusril Hardiansyah
- Global Agriculture Technology and Genomic Science Master Program, National Taiwan University, Taipei, Taiwan
| | - Yu-Chuan Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Yi-Fan Chen
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Ya-Yi Chung
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan.
- Global Agriculture Technology and Genomic Science Master Program, National Taiwan University, Taipei, Taiwan.
- Department of Life Science, National Taiwan University, Taipei, Taiwan.
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Qi WX, Liu F, Liu FF, Ren HY, Zhang BX, Yu XQ, Rao XJ. Discovery and characterization of a novel Lepidoptera-specific antimicrobial peptide from the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). INSECT SCIENCE 2024. [PMID: 39552199 DOI: 10.1111/1744-7917.13471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024]
Abstract
Antimicrobial peptides (AMPs) are critical components of innate immunity in diverse organisms, including plants, vertebrates, and insects. This study identified and characterized a novel Lepidoptera-specific AMP, named lepidoptin, from the invasive pest Spodoptera frugiperda (Lepidoptera: Noctuidae). Lepidoptin is a 116-amino acid protein containing a signal peptide and a novel β-sandwich domain that is distinct from previously reported AMPs. Temporal and spatial expression analyses revealed a significant upregulation of the lepidoptin gene in vivo and in cultured SF9 cells in response to pathogens. Molecular docking analysis identified a specific binding cavity. Enzyme-linked immunosorbent assay and binding assays confirmed that lepidoptin can bind to pathogen-associated molecular patterns, bacteria, and fungi. Recombinant lepidoptin exhibited potent antibacterial activity by inducing bacterial agglutination, inhibiting bacterial growth, increasing bacterial membrane permeability, and preventing biofilm formation. Lepidoptin also showed antifungal activity against the entomopathogenic fungus Beauveria bassiana by inhibiting spore germination, increasing fungal cell permeability, and increasing reactive oxygen species. Injection of recombinant lepidoptin into S. frugiperda larvae increased survival after B. bassiana infection, whereas knockdown of lepidoptin by RNA interference decreased larval survival. In addition, lepidoptin showed antimicrobial activity against the plant pathogen Fusarium graminearum by inhibiting spore germination and alleviating disease symptoms in wheat seedlings and cherry tomatoes. This study demonstrates the remarkable dual functionality of lepidoptin in enhancing S. frugiperda immunity and controlling plant pathogens, making it a promising candidate for biocontrol strategies in both pest management and plant disease prevention.
Collapse
Affiliation(s)
- Wen-Xuan Qi
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, China
| | - Feng Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, China
| | - Fang-Fang Liu
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, China
| | - Hai-Yan Ren
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, China
| | - Bang-Xian Zhang
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, China
| | - Xiao-Qiang Yu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiang-Jun Rao
- Anhui Province Key Laboratory of Integrated Pest Management on Crops, School of Plant Protection, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agri-products Quality and Biosafety (Anhui Agricultural University), Ministry of Education, Hefei, China
| |
Collapse
|
4
|
Santos MG, Nunes da Silva M, Vasconcelos MW, Carvalho SMP. Scientific and technological advances in the development of sustainable disease management tools: a case study on kiwifruit bacterial canker. FRONTIERS IN PLANT SCIENCE 2024; 14:1306420. [PMID: 38273947 PMCID: PMC10808555 DOI: 10.3389/fpls.2023.1306420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Plant disease outbreaks are increasing in a world facing climate change and globalized markets, representing a serious threat to food security. Kiwifruit Bacterial Canker (KBC), caused by the bacterium Pseudomonas syringae pv. actinidiae (Psa), was selected as a case study for being an example of a pandemic disease that severely impacted crop production, leading to huge economic losses, and for the effort that has been made to control this disease. This review provides an in-depth and critical analysis on the scientific progress made for developing alternative tools for sustainable KBC management. Their status in terms of technological maturity is discussed and a set of opportunities and threats are also presented. The gradual replacement of susceptible kiwifruit cultivars, with more tolerant ones, significantly reduced KBC incidence and was a major milestone for Psa containment - which highlights the importance of plant breeding. Nonetheless, this is a very laborious process. Moreover, the potential threat of Psa evolving to more virulent biovars, or resistant lineages to existing control methods, strengthens the need of keep on exploring effective and more environmentally friendly tools for KBC management. Currently, plant elicitors and beneficial fungi and bacteria are already being used in the field with some degree of success. Precision agriculture technologies, for improving early disease detection and preventing pathogen dispersal, are also being developed and optimized. These include hyperspectral technologies and forecast models for Psa risk assessment, with the latter being slightly more advanced in terms of technological maturity. Additionally, plant protection products based on innovative formulations with molecules with antibacterial activity against Psa (e.g., essential oils, phages and antimicrobial peptides) have been validated primarily in laboratory trials and with few compounds already reaching field application. The lessons learned with this pandemic disease, and the acquired scientific and technological knowledge, can be of importance for sustainably managing other plant diseases and handling future pandemic outbreaks.
Collapse
Affiliation(s)
- Miguel G. Santos
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| | - Marta Nunes da Silva
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Susana M. P. Carvalho
- GreenUPorto—Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences of the University of Porto, Vairão, Portugal
| |
Collapse
|
5
|
Chen EHL, Wang CH, Liao YT, Chan FY, Kanaoka Y, Uchihashi T, Kato K, Lai L, Chang YW, Ho MC, Chen RPY. Visualizing the membrane disruption action of antimicrobial peptides by cryo-electron tomography. Nat Commun 2023; 14:5464. [PMID: 37673860 PMCID: PMC10482868 DOI: 10.1038/s41467-023-41156-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
The abuse of antibiotics has led to the emergence of multidrug-resistant microbial pathogens, presenting a pressing challenge in global healthcare. Membrane-disrupting antimicrobial peptides (AMPs) combat so-called superbugs via mechanisms different than conventional antibiotics and have good application prospects in medicine, agriculture, and the food industry. However, the mechanism-of-action of AMPs has not been fully characterized at the cellular level due to a lack of high-resolution imaging technologies that can capture cellular-membrane disruption events in the hydrated state. Previously, we reported PepD2M, a de novo-designed AMP with potent and wide-spectrum bactericidal and fungicidal activity. In this study, we use cryo-electron tomography (cryo-ET) and high-speed atomic force microscopy (HS-AFM) to directly visualize the pepD2M-induced disruption of the outer and inner membranes of the Gram-negative bacterium Escherichia coli, and compared with a well-known pore-forming peptide, melittin. Our high-resolution cryo-ET images reveal how pepD2M disrupts the E. coli membrane using a carpet/detergent-like mechanism. Our studies reveal the direct membrane-disrupting consequence of AMPs on the bacterial membrane by cryo-ET, and this information provides critical insights into the mechanisms of this class of antimicrobial agents.
Collapse
Affiliation(s)
- Eric H-L Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Ting Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Yueh Chan
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Yui Kanaoka
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Takayuki Uchihashi
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, 464-8602, Japan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, 467-8603, Japan
| | - Longsheng Lai
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6059, USA
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan.
| | - Rita P-Y Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
6
|
Huang K, Liu W, Zhao FJ. Methylarsenite is a broad-spectrum antibiotic disrupting cell wall biosynthesis and cell membrane potential. Environ Microbiol 2023; 25:562-574. [PMID: 36510854 DOI: 10.1111/1462-2920.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Methylarsenite (MAs(III)), a product of arsenic biomethylation or bioreduction of methylarsenate (MAs(V)), has been proposed as a primitive antibiotic. However, the antibacterial property and the bactericidal mechanism of MAs(III) remain largely unclear. In this study, we found that MAs(III) is highly toxic to 14 strains of bacteria, especially against 9 strains of Gram-positive bacteria with half maximal inhibitory concentration (IC50) in the sub micromolar range for Staphyloccocus aureus, Microbacterium sp., Pseudarthrobacter siccitolerans and several Bacillus species. In a co-culture of B. subtilis 168 and MAs(III)-producer Enterobacter sp. CZ-1, the later reduced non-toxic MAs(V) to highly toxic MAs(III) to kill the former and gain a competitive advantage. MAs(III) induced autolysis of B. subtilis 168. Deletion of the autolysins LytC, LytD, LytE, and LytF suppressed MAs(III)-induced autolysis in B. subtilis 168. Transcriptomic analysis showed that MAs(III) downregulated the expression of the major genes involved in the biosynthesis of the cell wall peptidoglycan. Overexpression of an UDP-N-acetylglucosamine enolpyruvyl transferase gene murAA alleviated MAs(III)-induced autolysis in B. subtilis 168. MAs(III) disrupted the membrane potential of B. subtilis 168 and caused severe membrane damage. The results suggest that MAs(III) is a broad-spectrum antibiotic preferentially against Gram-positive bacteria by disrupting the cell wall biosynthesis pathway and cell membrane potential.
Collapse
Affiliation(s)
- Ke Huang
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Liu
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Patent Highlights June–July 2022. Pharm Pat Anal 2022; 12:5-11. [PMID: 36511078 DOI: 10.4155/ppa-2022-0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A snapshot of noteworthy recent developments in the patent literature of relevance to pharmaceutical and medical research and development.
Collapse
|