1
|
Tao YT, Chen LX, Jiang M, Jin J, Sun ZS, Cai CN, Lin HY, Kwok A, Li JM, van Kleunen M. Complete chloroplast genome data reveal the existence of the Solidago canadensis L. complex and its potential introduction pathways into China. FRONTIERS IN PLANT SCIENCE 2024; 15:1498543. [PMID: 39759232 PMCID: PMC11695338 DOI: 10.3389/fpls.2024.1498543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025]
Abstract
Solidago canadensis, native to North America, is an invasive species in many areas of the world, where it causes serious damage to natural ecosystems and economic losses. However, a dearth of genetic resources and molecular markers has hampered our understanding of its invasion history. Here, we de novo assembled 40 complete chloroplast genomes of Solidago species, including 21 S. canadensis individuals, 15 S. altissima individuals, and four S. decurrens individuals, the sizes of which ranged from 152,412 bp to 153,170 bp. The phylogenetic trees based on the complete chloroplast genome sequences and nuclear genome-wide SNP data showed that S. canadensis and S. altissima cluster together and form a monophyletic pair, as sister to S. decurrens, indicating the existence of the S. canadensis L. complex in China. Three potential introduction pathways were identified. The chloroplast-genome structure and gene contents are conservative in the genomes of the S. canadensis L. complex and S. decurrens. The analysis of sequence divergence indicated five variable regions, and 10 chloroplast protein-coding genes that underwent positive selection were identified. Our findings shed new light on the invasion history of S. canadensis and the data sets generated in this study will facilitate future research on its chloroplast genome evolution.
Collapse
Affiliation(s)
- Yu-Tian Tao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- School of Electronics and Information Engineering, Taizhou University, Taizhou, China
| | - Lu-Xi Chen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Ming Jiang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Jie Jin
- School of Electronics and Information Engineering, Taizhou University, Taizhou, China
| | - Zhong-Shuai Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
| | - Chao-Nan Cai
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- School of Advances Study, Taizhou University, Taizhou, China
| | - Han-Yang Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- School of Advances Study, Taizhou University, Taizhou, China
| | - Allison Kwok
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Jun-Min Li
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- School of Advances Study, Taizhou University, Taizhou, China
| | - Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, China
- School of Advances Study, Taizhou University, Taizhou, China
- Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
2
|
Tussipkan D, Shevtsov V, Ramazanova M, Rakhimzhanova A, Shevtsov A, Manabayeva S. Kazakhstan tulips: comparative analysis of complete chloroplast genomes of four local and endangered species of the genus Tulipa L. FRONTIERS IN PLANT SCIENCE 2024; 15:1433253. [PMID: 39600902 PMCID: PMC11588485 DOI: 10.3389/fpls.2024.1433253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024]
Abstract
Species of Tulipa are important ornamental plants used for horticultural purposes in various countries, across Asia, Europe, and North Africa. The present study is the first report on typical features of the complete chloroplast genome sequence of four local and endangered species including T. alberti, T. kaufmanniana, T. greigii, and T. dubia from Kazakhstan using Illumina sequencing technology. The comparative analyses revealed that the complete genomes of four species were highly conserved in terms of total genome size (152. 006 bp - 152. 382 bp), including a pair of inverted repeat regions (26. 330 bp - 26. 371 bp), separated by a large single copy region (82.169 bp - 82,378 bp) and a small copy region (17.172 bp -17.260 bp). Total GC content (36.58-36.62 %), gene number (131), and intron length (540 bp - 2620 bp) of 28 genes. The complete genomes of four species showed nucleotide diversity (π =0,003257). The total number of SSR loci was 159 in T. alberti, 158 in T. kaufmanniana, 174 in T. greigii, and 163 in T. dubia. The result indicated that ten CDS genes, namely rpoC2, cemA, rbcL, rpl36, psbH, rps3, rpl22, ndhF, ycf1, and matK, with effective polymorphic simple sequence repeats (SSRs), high sequence variability (SV) ranging from 2.581 to 6.102, and high nucleotide diversity (Pi) of these loci ranging from 0,004 to 0,010. For all intergenic regions longer than 150 bp, twenty one most variable regions were found with high sequence variability (SV) ranging from 4,848 to 11,862 and high nucleotide diversity (Pi) ranging from 0,01599 to 0,01839. Relative synonymous codon usage (RSCU) analysis was used to identify overrepresented and underrepresented codons for each amino acid. Based on the phylogenic analysis, the sequences clustered into four major groups, reflecting distinct evolutionary lineages corresponding to the subgenera Eriostemons, Tulipa, and Orithyia. Notably, T. greigii was distinctively grouped with species from Orithyia and Eriostemons rather than with other Tulipa species, suggesting a unique evolutionary history potentially shaped by geographical isolation or specific ecological pressures. The complete chloroplast genome of the four Tulipa species provides fundamental information for future research studies, even for designing the high number of available molecular markers.
Collapse
Affiliation(s)
- Dilnur Tussipkan
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Vladislav Shevtsov
- Plant Genomics and Bioinformatics Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Malika Ramazanova
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Aizhan Rakhimzhanova
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Alexandr Shevtsov
- Applied Genetics Laboratory, National Center for Biotechnology, Astana, Kazakhstan
| | - Shuga Manabayeva
- Plant Genetic Engineering Laboratory, National Center for Biotechnology, Astana, Kazakhstan
- General Biology and Genomics Department, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana, Kazakhstan
| |
Collapse
|
3
|
Wang Z, Liu J, Qi X, Su D, Yang J, Cui X. Study of Endogenous Viruses in the Strawberry Plants. Viruses 2024; 16:1306. [PMID: 39205280 PMCID: PMC11359110 DOI: 10.3390/v16081306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous viral elements (EVEs) have been reported to exist widely in the genomes of eukaryotic organisms, and they are closely associated with the growth, development, genetics, adaptation, and evolution of their hosts. In this study, two methods-homologous sequence search and genome alignment-were used to explore the endogenous viral sequences in the genomes of Fragaria species. Results revealed abundant endogenous pararetroviruses (EPRVs) in the genomes of Fragaria species, including 786 sequences belonging to five known taxa such as Caulimovirus and other unclassified taxa. Differences were observed in the detected EPRVs between the two methods, with the homologous sequence search having a greater number of EPRVs. On the contrary, genome alignment identified various types and sources of virus-like sequences. Furthermore, through genome alignment, a 267-bp sequence with 95% similarity to the gene encoding the aphid-transmitted protein of Strawberry vein banding virus (Caulimovirus venafragariae) was discovered in the F. chiloensis genome, which was likely a recent insertion. In addition, the statistical analysis of the genome alignment results indicated a remarkably higher abundance of virus-like sequences in the genomes of polyploid strawberries compared with diploid ones. Moreover, the differences in virus-like sequences were observed between the genomes of Fragaria species and those of their close relatives. This study enriched the diversity of viruses that infect strawberries, and laid a theoretical foundation for further research on the origin of endogenous viruses in the strawberry genome, host-virus interactions, adaptation, evolution, and their functions.
Collapse
Affiliation(s)
- Zongneng Wang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Jian Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Xingyang Qi
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Daifa Su
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Junyu Yang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming 650500, China
| | - Xiaolong Cui
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| |
Collapse
|
4
|
Kim JE, Kim KM, Kim YS, Chung GY, Che SH, Na CS. Chloroplast Genomes of Vitis flexuosa and Vitis amurensis: Molecular Structure, Phylogenetic, and Comparative Analyses for Wild Plant Conservation. Genes (Basel) 2024; 15:761. [PMID: 38927697 PMCID: PMC11203327 DOI: 10.3390/genes15060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The chloroplast genome plays a crucial role in elucidating genetic diversity and phylogenetic relationships. Vitis vinifera L. (grapevine) is an economically important species, prompting exploration of wild genetic resources to enhance stress resilience. We meticulously assembled the chloroplast genomes of two Korean Vitis L. species, V. flexuosa Thunb. and V. amurensis Rupr., contributing valuable data to the Korea Crop Wild Relatives inventory. Through exhaustive specimen collection spanning diverse ecological niches across South Korea, we ensured comprehensive representation of genetic diversity. Our analysis, which included rigorous codon usage bias assessment and repeat analysis, provides valuable insights into amino acid preferences and facilitates the identification of potential molecular markers. The assembled chloroplast genomes were subjected to meticulous annotation, revealing divergence hotspots enriched with nucleotide diversity, thereby presenting promising candidates for DNA barcodes. Additionally, phylogenetic analysis reaffirmed intra-genus relationships and identified related crops, shedding light on evolutionary patterns within the genus. Comparative examination with chloroplast genomes of other crops uncovered conserved sequences and variable regions, offering critical insights into genetic evolution and adaptation. Our study advances the understanding of chloroplast genomes, genetic diversity, and phylogenetic relationships within Vitis species, thereby laying a foundation for enhancing grapevine genetic diversity and resilience to environmental challenges.
Collapse
Affiliation(s)
- Ji Eun Kim
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| | - Keyong Min Kim
- Arboretum Education Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Yang Su Kim
- Department of General Affairs, General Affairs Team, Gangeung-Wonju National University, Gangeung 25457, Republic of Korea
| | - Gyu Young Chung
- Department of Forest Science, Andong National University, Andong 36729, Republic of Korea
| | - Sang Hoon Che
- Forest Bioresources Department, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea
| | - Chae Sun Na
- Wild Plant Seed Office, Baekdudaegan National Arboretum, Bongwha 36209, Republic of Korea;
| |
Collapse
|
5
|
Wang Y, Wei Q, Xue T, He S, Fang J, Zeng C. Comparative and phylogenetic analysis of the complete chloroplast genomes of 10 Artemisia selengensis resources based on high-throughput sequencing. BMC Genomics 2024; 25:561. [PMID: 38840044 PMCID: PMC11151499 DOI: 10.1186/s12864-024-10455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.
Collapse
Affiliation(s)
- Yuhang Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Qingying Wei
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Tianyuan Xue
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Sixiao He
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China
| | - Jiao Fang
- School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Science, Jianghan University, Jianghan University, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Li QQ, Zhang ZP, Aogan, Wen J. Comparative chloroplast genomes of Argentina species: genome evolution and phylogenomic implications. FRONTIERS IN PLANT SCIENCE 2024; 15:1349358. [PMID: 38766467 PMCID: PMC11099909 DOI: 10.3389/fpls.2024.1349358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/25/2024] [Indexed: 05/22/2024]
Abstract
The genus Argentina Hill belongs to the tribe Potentilleae Sweet and contains approximately 75 species predominantly distributed in the Sino-Himalayan region and the Malesian archipelago. So far we have less knowledge on the phylogenetic relationships within Argentina owing to limited sampling of Argentina taxa or gene fragments in previous studies. Moreover, to date there is no phylogenetic study on Argentina from the perspective of comparative chloroplast (cp) genomics. Here we performed comparative genomic analyses on the cp genomes of 39 accessions representing 18 taxa of Argentina. The Argentina cp genomes presented the typical quadripartite structure, with the sizes ranging from 155 096 bp to 157 166 bp. The 39 Argentina cp genomes contained a set of 112 unique genes, comprising four ribosomal RNA (rRNA) genes, 30 transfer RNA (tRNA) genes, as well as 78 protein-coding genes (PCGs). The cp genome organization, gene content and order in Argentina were highly conserved, but some visible divergences were present in IR/SC boundary regions. Ten regions (trnH-GUG-psbA, trnG-GCC-trnfM-CAU, trnD-GUC-trnY-GUA, rpl32-trnL-UAG, atpH-atpI, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, ndhF-rpl32, trnR-UCU-atpA, and accD-psaI) were identified as excellent candidate DNA markers for future studies on species identification, population genetics and phylogeny of Argentina. Our results indicated that Argentina is monophyletic. In the current sampling, the A. smithiana - A. anserina clade was sister to the remainder of Argentina. Our results corroborated the previous taxonomic treatments to transfer A. phanerophlebia and A. micropetala from the genus Sibbaldia L. to Argentina. Our results showed close relationships among A. stenophylla, A. microphylla, A. taliensis, and A. tatsienluensis, congruent with previous studies based on the morphology of these species. Twenty-six genes (rps3, rps15, rps16, rps19, rpl16, rpl20, rpl22, rpoA, rpoB, rpoC1, rpoC2, atpA, atpF, psbB, psbF, ndhA, ndhB, ndhC, ndhD, ndhF, rbcL, accD, ccsA, matK, ycf1, ycf2) were with sites under positive selection, and adaptive evolution of these genes might have played crucial roles in Argentina species adaptation to the harsh mountain environment. This study will facilitate future work on taxonomy, phylogenetics, and adaptive evolution of Argentina.
Collapse
Affiliation(s)
- Qin-Qin Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
- Key Laboratory of Biodiversity Conservation and Sustainable Utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot, China
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| | - Zhi-Ping Zhang
- College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Aogan
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, China
| | - Jun Wen
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States
| |
Collapse
|
7
|
Wang Y, Zhao X, Chen Q, Yang J, Hu J, Jia D, Ma R. Complete Chloroplast Genome of Alternanthera sessilis and Comparative Analysis with Its Congeneric Invasive Weed Alternanthera philoxeroides. Genes (Basel) 2024; 15:544. [PMID: 38790173 PMCID: PMC11121667 DOI: 10.3390/genes15050544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Alternanthera sessilis is considered the closest relative to the invasive weed Alternanthera philoxeroides in China, making it an important native species for studying the invasive mechanisms and adaptations of A. philoxeroides. Chloroplasts play a crucial role in a plant's environmental adaptation, with their genomes being pivotal in the evolution and adaptation of both invasive and related species. However, the chloroplast genome of A. sessilis has remained unknown until now. In this study, we sequenced and assembled the complete chloroplast genome of A. sessilis using high-throughput sequencing. The A. sessilis chloroplast genome is 151,935 base pairs long, comprising two inverted repeat regions, a large single copy region, and a small single copy region. This chloroplast genome contains 128 genes, including 8 rRNA-coding genes, 37 tRNA-coding genes, 4 pseudogenes, and 83 protein-coding genes. When compared to the chloroplast genome of the invasive weed A. philoxeroides and other Amaranthaceae species, we observed significant variations in the ccsA, ycf1, and ycf2 regions in the A. sessilis chloroplast genome. Moreover, two genes, ccsA and accD, were found to be undergoing rapid evolution due to positive selection pressure. The phylogenetic trees were constructed for the Amaranthaceae family, estimating the time of independent species formation between A. philoxeroides and A. sessilis to be approximately 3.5186-8.8242 million years ago. These findings provide a foundation for understanding the population variation within invasive species among the Alternanthera genus.
Collapse
Affiliation(s)
- Yuanxin Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Xueying Zhao
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Qianhui Chen
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Jun Yang
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Jun Hu
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
| | - Dong Jia
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
- Ministerial and Provincial Co-Innovation Centre for Endemic Crops Production with High-Quality and Effciency in Loess Plateau, Taigu 030801, China
| | - Ruiyan Ma
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China; (Y.W.); (X.Z.); (Q.C.); (J.Y.); (J.H.)
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taiyuan 030031, China
| |
Collapse
|
8
|
He S, Xu B, Chen S, Li G, Zhang J, Xu J, Wu H, Li X, Yang Z. Sequence characteristics, genetic diversity and phylogenetic analysis of the Cucurbita ficifolia (Cucurbitaceae) chloroplasts genome. BMC Genomics 2024; 25:384. [PMID: 38637729 PMCID: PMC11027378 DOI: 10.1186/s12864-024-10278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Curcubita ficifolia Bouché (Cucurbitaceae) has high value as a food crop and medicinal plant, and also has horticultural value as rootstock for other melon species. China is home to many different cultivars, but the genetic diversity of these resources and the evolutionary relationships among them, as well as the differences between C. ficifolia and other Cucurbita species, remain unclear. RESULTS We investigated the chloroplast (cp) genomes of 160 C. ficifolia individuals from 31 populations in Yunnan, a major C. ficifolia production area in China. We found that the cp genome of C. ficifolia is ~151 kb and contains 128 genes, of which 86 are protein coding genes, 34 encode tRNA, and eight encode rRNAs. We also identified 64 SSRs, mainly AT repeats. The cp genome was found to contain a total of 204 SNP and 57 indels, and a total of 21 haplotypes were found in the 160 study individuals. The reverse repeat (IR) region of C. ficifolia contained a few differences compared with this region in the six other Cucurbita species. Sequence difference analysis demonstrated that most of the variable regions were concentrated in the single copy (SC) region. Moreover, the sequences of the coding regions were found to be more similar among species than those of the non-coding regions. The phylogenies reconstructed from the cp genomes of 61 representative species of Cucurbitaceae reflected the currently accepted classification, in which C. ficifolia is sister to the other Cucurbita species, however, different interspecific relationships were found between Cucurbita species. CONCLUSIONS These results will be valuable in the classification of C. ficifolia genetic resources and will contribute to our understanding of evolutionary relationships within the genus Cucurbita.
Collapse
Affiliation(s)
- Shuilian He
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Bin Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Siyun Chen
- Plant Germplasm and Genomics Center, Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
| | - Gengyun Li
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Jie Zhang
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Junqiang Xu
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Hang Wu
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China
| | - Xuejiao Li
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| | - Zhengan Yang
- College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, 650201, Kunming, Yunnan, China.
| |
Collapse
|
9
|
Yuan Y, Gao Y. Lilium liangiae, a new species in the genus Lilium (Liliaceae) that reveals parallel evolution within morphology. FRONTIERS IN PLANT SCIENCE 2024; 15:1371237. [PMID: 38601309 PMCID: PMC11004424 DOI: 10.3389/fpls.2024.1371237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The former genus Nomocharis, which has been merged as a clade within the genus Lilium (Liliaceae), represents one of the most complicated and unclear groups included in the latter. Research on members of the Nomocharis clade has been quite limited due to the sampling difficulties caused by its selective environmental preferences. In this study, we propose a new species within this clade, Lilium liangiae, as a further bridge connecting the former genus Nomocharis with other members of the genus Lilium. We conducted morphological clustering, phylogenetic, and comparative genomics analyses of nuclear internal spacers and the newly generated complete chloroplast genome, in conjunction with previously published sequences, and performed ancestral state reconstruction to clarify the evolutionary pattern of important traits in Lilium. The clustering results of 38 morphological traits indicated that the new species is allied to Nomocharis, further increasing the morphological polymorphism in the latter. The phylogenetic results and morphological clustering both supported L. liangiae belonging to the subclade Ecristata in Nomocharis, its closest affinity being Lilium gongshanense. Inconsistencies in phylogenetic relationships were detected between nuclear and plastid datasets, possibly due to ancient hybridization and ongoing introgression. Comparative genomics revealed the conservation and similarity of their chloroplast genomes, with variations observed in the expansion and contraction of the IR regions. A/T and palindromic repeat sequences were the most abundant. Seven highly variable regions (Pi≥0.015) were identified as potential molecular markers based on the chloroplast genomes of 47 species within Lilium. Both nuclear and plastid genes exhibited very low variability within the Nomocharis clade, contrasting with their highly variable morphological appearance. The ancestral state reconstruction analysis suggests that the campanulate flower form, as in L. liangiae, arose at least three times within the genus Lilium, revealing parallel evolution in the latter. Overall, this study adds important genetic and morphological evidence for understanding the phylogenetic relationships and parallel evolution patterns of species within the genus Lilium.
Collapse
Affiliation(s)
- Yumei Yuan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yundong Gao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization and Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Zhang SY, Yan HF, Wei L, Liu TJ, Chen L, Hao G, Wu X, Zhang QL. Plastid genome and its phylogenetic implications of Asiatic Spiraea (Rosaceae). BMC PLANT BIOLOGY 2024; 24:23. [PMID: 38166728 PMCID: PMC10763413 DOI: 10.1186/s12870-023-04697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.
Collapse
Affiliation(s)
- Shu-Yan Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Hai-Fei Yan
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lei Wei
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Tong-Jian Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- South China National Botanical Garden, Guangzhou, 510650, China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Lin Chen
- Hangzhou Xixi National Wetland Park Service Center (Hangzhou Xixi National Wetland Park Ecology & Culture Research Center), Hangzhou, 310013, China
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xing Wu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
- South China National Botanical Garden, Guangzhou, 510650, China.
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Qiao-Ling Zhang
- Hangzhou Xixi National Wetland Park Service Center (Hangzhou Xixi National Wetland Park Ecology & Culture Research Center), Hangzhou, 310013, China.
| |
Collapse
|
11
|
Nhat Nam N, Hoang Danh N, Minh Thiet V, Do HDK. New Insights Into The Evolution of Chloroplast Genomes in Ochna Species (Ochnaceae, Malpighiales). Evol Bioinform Online 2023; 19:11769343231210756. [PMID: 38020533 PMCID: PMC10655658 DOI: 10.1177/11769343231210756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Ochnaceae DC. includes more than 600 species that exhibit potential values for environmental ecology, ornamental, pharmaceutical, and timber industries. Although studies on phylogeny and phytochemicals have been intensively conducted, chloroplast genome data of Ochnaceae species have not been fully explored. In this study, the next-generation sequencing method was used to sequence the chloroplast genomes of Ochna integerrima and Ochna serrulata which were 157 329 and 157 835 bp in length, respectively. These chloroplast genomes had a quadripartite structure and contained 78 protein-coding genes, 30 tRNAs, and 4 rRNAs. Comparative analysis revealed 8 hypervariable regions, including trnK_UUU-trnQ_UUG, rpoB-psbM, trnS_GGA-rps4, accD-psaI, rpl33-rps18, rpl14-rpl16, ndhF-trnL_UAG, and rps15-ycf1 among 6 Ochnaceae taxa. Additionally, there were shared and unique repeats among 6 examined chloroplast genomes. The notable changes were the loss of rpl32 in Ochna species and the deletion of rps16 exon 2 in O. integerrima compared to other taxa. This study is the first comprehensive comparative genomic analysis of complete chloroplast genomes of Ochna species and related taxa in Ochnaceae. Consequently, the current study provides initial results for further research on genomic evolution, population genetics, and developing molecular markers in Ochnaceae and related taxa.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City, Vietnam
| | - Nguyen Hoang Danh
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Vu Minh Thiet
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
12
|
Song Y, Li C, Liu L, Hu P, Li G, Zhao X, Zhou H. The population genomic analyses of chloroplast genomes shed new insights on the complicated ploidy and evolutionary history in Fragaria. FRONTIERS IN PLANT SCIENCE 2023; 13:1065218. [PMID: 36874917 PMCID: PMC9975502 DOI: 10.3389/fpls.2022.1065218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
The genus Fragaria consists of a rich diversity of ploidy levels with diploid (2x), tetraploid (4x), pentaploid (5x), hexaploidy (6x), octoploid (8x) and decaploid (10x) species. Only a few studies have explored the origin of diploid and octoploid strawberry, and little is known about the roles of tetraploidy and hexaploidy during the evolution of octoploid strawberry. The chloroplast genome is usually a stable circular genome and is widely used in investigating the evolution and matrilineal identification. Here, we assembled the chloroplast genomes of F. x ananassa cv. 'Benihoppe' (8x) using Illumina and HiFi data seperately. The genome alignment results showed that more InDels were located in the chloroplast genomes based on the PacBio HiFi data than Illumina data. We obtain highly accurate chloroplast genomes assembled through GetOrganelle using Illumina reads. We assembled 200 chloroplast genomes including 198 Fragaria (21 species) and 2 Potentilla samples. Analyses of sequence variation, phylogenetic and PCA analyses showed that Fragaria was divided into five groups. F. iinumae, F. nilgerrensis and all octoploid accessions formed Group A, C and E separately. Species native to western China were clustered into Group B. Group D consisted of F. virdis, F. orientalis, F. moschata, and F. vesca. STRUCTURE and haplotype network confirmed that the diploid F. vesca subsp. bracteata was the last maternal donator of octoploid strawberry. The dN/dS ratio estimated for the protein-coding genes revealed that genes involved in ATP synthase and photosystem function were under positive selection. These findings demonstrate the phylogeny of totally 21 Fragaria species and the origin of octoploid species. F. vesca was the last female donator of octoploid, which confirms the hypothesis that the hexaploid species F. moschata may be an evolutionary intermediate between the diploids and wild octoploid species.
Collapse
Affiliation(s)
- Yanhong Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Chaochao Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Lifeng Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
13
|
Comparative Analysis on the Codon Usage Pattern of the Chloroplast Genomes in Malus Species. Biochem Genet 2022; 61:1050-1064. [DOI: 10.1007/s10528-022-10302-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
|
14
|
Varani AM, Silva SR, Lopes S, Barbosa JBF, Oliveira D, Corrêa MA, Moraes AP, Miranda VF, Prosdocimi F. The complete organellar genomes of the entheogenic plant Psychotria viridis (Rubiaceae), a main component of the ayahuasca brew. PeerJ 2022; 10:e14114. [PMID: 36275467 PMCID: PMC9586082 DOI: 10.7717/peerj.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 01/21/2023] Open
Abstract
Psychotria viridis (Rubioideae: Rubiaceae), popularly known as chacrona, is commonly found as a shrub in the Amazon region and is well-known to produce psychoactive compounds, such as the N,N-dimethyltryptamine (DMT). Together with the liana Banisteropsis caapi, P. viridis is one of the main components of the Amerindian traditional, entheogenic beverage known as ayahuasca. In this work, we assembled and annotated the organellar genomes (ptDNA and mtDNA), presenting the first genomics resources for this species. The P. viridis ptDNA exhibits 154,106 bp, encoding all known ptDNA gene repertoire found in angiosperms. The Psychotria genus is a complex paraphyletic group, and according to phylogenomic analyses, P. viridis is nested in the Psychotrieae clade. Comparative ptDNA analyses indicate that most Rubiaceae plastomes present conserved ptDNA structures, often showing slight differences at the junction sites of the major four regions (LSC-IR-SSC). For the mitochondrion, assembly graph-based analysis supports a complex mtDNA organization, presenting at least two alternative and circular mitogenomes structures exhibiting two main repeats spanning 24 kb and 749 bp that may symmetrically isomerize the mitogenome into variable arrangements and isoforms. The circular mtDNA sequences (615,370 and 570,344 bp) encode almost all plant mitochondrial genes (except for the ccmC, rps7, rps10, rps14, rps19, rpl2 and rpl16 that appears as pseudogenes, and the absent genes sdh3, rps2, rsp4, rsp8, rps11, rpl6, and rpl10), showing slight variations related to exclusive regions, ptDNA integration, and relics of previous events of LTR-RT integration. The detection of two mitogenomes haplotypes is evidence of heteroplasmy as observed by the complex organization of the mitochondrial genome using graph-based analysis. Taken together, these results elicit the primary insights into the genome biology and evolutionary history of Psychotria viridis and may be used to aid strategies for conservation of this sacred, entheogenic species.
Collapse
Affiliation(s)
- Alessandro M. Varani
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Saura R. Silva
- Department of Agricultural and Environmental Biotechnology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| | - Simone Lopes
- Laboratory of Genetics and Molecular Biology, State University of Paraíba (UEPB), Campina Grande, Paraíba, Brazil
| | | | - Danilo Oliveira
- Laboratory of Bioprospection and Applied Ethnopharmacology, Faculty of Pharmacy, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Alice Corrêa
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Moraes
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), São Bernardo do Campo, São Paulo, Brazil
| | - Vitor F.O. Miranda
- School of Agricultural and Veterinarian Sciences, Department of Biology, São Paulo State University (Unesp), Jaboticabal, São Paulo, Brazil
| | - Francisco Prosdocimi
- Laboratório de Genômica e Biodiversidade, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Molecular Characterization of Wild and Cultivated Strawberry (Fragaria × ananassa) through DNA Barcode Markers. Genet Res (Camb) 2022; 2022:9249561. [PMID: 36299683 PMCID: PMC9578897 DOI: 10.1155/2022/9249561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background DNA barcoding is a useful technique for the identification, conservation, and diversity estimation at the species level in plants. The current research work was carried out to characterize selected Fragaria species from northern Pakistan using DNA barcode markers. Methodology. Initially, the efficacy of eight DNA barcode markers was analyzed based on the amplification and sequencing of the genome of selected Fragaria species. The resultant sequences were analyzed using BLAST, MEGA 7.0, and Bio Edit software. The phylogenetic tree was constructed by using Fragaria current species sequences and reference sequences through the neighbor-joining method or maximum likelihood method. Results Among eight DNA barcode markers, only two (ITS2 and rbclC) were amplified, and sequences were obtained. ITS2 sequence was BLAST in NCBI for related reference species which ranged from 89.79% to 90.05% along with Fragaria vesca (AF163517.1) which have 99.05% identity. Similarly, the rbclC sequence of Fragaria species was ranged from 96% to 99.58% along with Fragaria × ananassa (KY358226.1) which had 99.58% identity. Conclusion It is recommended that DNA barcode markers are a useful tool to identify the genetic diversity of a species. Moreover, this study could be helpful for the identification of the Fragaria species cultivated in other regions of the world.
Collapse
|
16
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [DOI: https:/doi.org/10.1186/s12870-022-03736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/21/2023]
Abstract
AbstractBackgroundCalanthe(Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of theCalanthealliance (Calanthe,Cephalantheropsis, andPhaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed ade novoassembly, and did a comparative analysis of 8Calanthegroup species' plastomes: 6Calantheand 2Phaiusspecies. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae.ResultsThe complete plastomes of theCalanthegroup species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost inC.delavayi(P. delavayi), includingndhC,ndhF, andndhKgenes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in theCalanthegroup, and confirmed the position ofPhaius delavayiin the genusCalantheas opposed to its previous placement inPhaius.ConclusionThis study provides a report on the complete plastomes of 6Calantheand 2Phaiusspecies and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
|
17
|
Nanjala C, Wanga VO, Odago W, Mutinda ES, Waswa EN, Oulo MA, Mkala EM, Kuja J, Yang JX, Dong X, Hu GW, Wang QF. Plastome structure of 8 Calanthe s.l. species (Orchidaceae): comparative genomics, phylogenetic analysis. BMC PLANT BIOLOGY 2022; 22:387. [PMID: 35918646 PMCID: PMC9347164 DOI: 10.1186/s12870-022-03736-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/29/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Calanthe (Epidendroideae, Orchidaceae) is a pantropical genus distributed in Asia and Africa. Its species are of great importance in terms of economic, ornamental and medicinal values. However, due to limited and confusing delimitation characters, the taxonomy of the Calanthe alliance (Calanthe, Cephalantheropsis, and Phaius) has not been sufficiently resolved. Additionally, the limited genomic information has shown incongruences in its systematics and phylogeny. In this study, we used illumina platform sequencing, performed a de novo assembly, and did a comparative analysis of 8 Calanthe group species' plastomes: 6 Calanthe and 2 Phaius species. Phylogenetic analyses were used to reconstruct the relationships of the species as well as with other species of the family Orchidaceae. RESULTS The complete plastomes of the Calanthe group species have a quadripartite structure with varied sizes ranging between 150,105bp-158,714bp, including a large single-copy region (LSC; 83,364bp- 87,450bp), a small single-copy region (SSC; 16,297bp -18,586bp), and a pair of inverted repeat regions (IRs; 25,222bp - 26,430bp). The overall GC content of these plastomes ranged between 36.6-36.9%. These plastomes encoded 131-134 differential genes, which included 85-88 protein-coding genes, 37-38 tRNA genes, and 8 rRNA genes. Comparative analysis showed no significant variations in terms of their sequences, gene content, gene order, sequence repeats and the GC content hence highly conserved. However, some genes were lost in C. delavayi (P. delavayi), including ndhC, ndhF, and ndhK genes. Compared to the coding regions, the non-coding regions had more sequence repeats hence important for species DNA barcoding. Phylogenetic analysis revealed a paraphyletic relationship in the Calanthe group, and confirmed the position of Phaius delavayi in the genus Calanthe as opposed to its previous placement in Phaius. CONCLUSION This study provides a report on the complete plastomes of 6 Calanthe and 2 Phaius species and elucidates the structural characteristics of the plastomes. It also highlights the power of plastome data to resolve phylogenetic relationships and clarifies taxonomic disputes among closely related species to improve our understanding of their systematics and evolution. Furthermore, it also provides valuable genetic resources and a basis for studying evolutionary relationships and population genetics among orchid species.
Collapse
Affiliation(s)
- Consolata Nanjala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Vincent Okelo Wanga
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Wyclif Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Millicent Akinyi Oulo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Josiah Kuja
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Xiang Dong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| | - Qing-Feng Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074 China
| |
Collapse
|
18
|
Cao DL, Zhang XJ, Xie SQ, Fan SJ, Qu XJ. Application of chloroplast genome in the identification of Traditional Chinese Medicine Viola philippica. BMC Genomics 2022; 23:540. [PMID: 35896957 PMCID: PMC9327190 DOI: 10.1186/s12864-022-08727-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viola philippica Cav. is the only source plant of "Zi Hua Di Ding", which is a Traditional Chinese Medicine (TCM) that is utilized as an antifebrile and detoxicant agent for the treatment of acute pyogenic infections. Historically, many Viola species with violet flowers have been misused in "Zi Hua Di Ding". Viola have been recognized as a taxonomically difficult genera due to their highly similar morphological characteristics. Here, all common V. philippica adulterants were sampled. A total of 24 complete chloroplast (cp) genomes were analyzed, among these 5 cp genome sequences were downloaded from GenBank and 19 cp genomes, including 2 "Zi Hua Di Ding" purchased from a local TCM pharmacy, were newly sequenced. RESULTS The Viola cp genomes ranged from 156,483 bp to 158,940 bp in length. A total of 110 unique genes were annotated, including 76 protein-coding genes, 30 tRNAs, and four rRNAs. Sequence divergence analysis screening identified 16 highly diverged sequences; these could be used as markers for the identification of Viola species. The morphological, maximum likelihood and Bayesian inference trees of whole cp genome sequences and highly diverged sequences were divided into five monophyletic clades. The species in each of the five clades were identical in their positions within the morphological and cp genome tree. The shared morphological characters belonging to each clade was summarized. Interestingly, unique variable sites were found in ndhF, rpl22, and ycf1 of V. philippica, and these sites can be selected to distinguish V. philippica from samples all other Viola species, including its most closely related species. In addition, important morphological characteristics were proposed to assist the identification of V. philippica. We applied these methods to examine 2 "Zi Hua Di Ding" randomly purchased from the local TCM pharmacy, and this analysis revealed that the morphological and molecular characteristics were valid for the identification of V. philippica. CONCLUSIONS This study provides invaluable data for the improvement of species identification and germplasm of V. philippica that may facilitate the application of a super-barcode in TCM identification and enable future studies on phylogenetic evolution and safe medical applications.
Collapse
Affiliation(s)
- Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shao-Qiu Xie
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| | - Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan, 250014, China.
| |
Collapse
|
19
|
Chen C, Miao Y, Luo D, Li J, Wang Z, Luo M, Zhao T, Liu D. Sequence Characteristics and Phylogenetic Analysis of the Artemisia argyi Chloroplast Genome. FRONTIERS IN PLANT SCIENCE 2022; 13:906725. [PMID: 35795352 PMCID: PMC9252292 DOI: 10.3389/fpls.2022.906725] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/06/2022] [Indexed: 06/03/2023]
Abstract
Artemisia argyi Levl. et Van is an important Asteraceae species with a high medicinal value. There are abundant A. argyi germplasm resources in Asia, especially in China, but the evolutionary relationships of these varieties and the systematic localization of A. argyi in the family Asteraceae are still unclear. In this study, the chloroplast (cp) genomes of 72 A. argyi varieties were systematically analyzed. The 72 varieties originated from 47 regions in China at different longitudes, latitudes and altitudes, and included both wild and cultivated varieties. The A. argyi cp genome was found to be ∼151 kb in size and to contain 114 genes, including 82 protein-coding, 28 tRNA, and 4 rRNA genes. The number of short sequence repeats (SSRs) in A. argyi cp genomes ranged from 35 to 42, and most of them were mononucleotide A/T repeats. A total of 196 polymorphic sites were detected in the cp genomes of the 72 varieties. Phylogenetic analysis demonstrated that the genetic relationship between A. argyi varieties had a weak relationship with their geographical distribution. Furthermore, inverted repeat (IR) boundaries of 10 Artemisia species were found to be significantly different. A sequence divergence analysis of Asteraceae cp genomes showed that the variable regions were mostly located in single-copy (SC) regions and that the coding regions were more conserved than the non-coding regions. A phylogenetic tree was constructed using 43 protein-coding genes common to 67 Asteraceae species. The resulting tree was consistent with the traditional classification system; Artemisia species were clustered into one group, and A. argyi was shown to be closely related to Artemisia lactiflora and Artemisia montana. In summary, this study systematically analyzed the cp genome characteristics of A. argyi and compared cp genomes of Asteraceae species. The results provide valuable information for the definitive identification of A. argyi varieties and for the understanding of the evolutionary relationships between Asteraceae species.
Collapse
|
20
|
Infrageneric Plastid Genomes of Cotoneaster (Rosaceae): Implications for the Plastome Evolution and Origin of C. wilsonii on Ulleung Island. Genes (Basel) 2022; 13:genes13050728. [PMID: 35627113 PMCID: PMC9141645 DOI: 10.3390/genes13050728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022] Open
Abstract
Cotoneaster is a taxonomically and ornamentally important genus in the family Rosaceae; however, phylogenetic relationships among its species are complicated owing to insufficient morphological diagnostic characteristics and hybridization associated with polyploidy and apomixis. In this study, we sequenced the complete plastomes of seven Cotoneaster species (C. dielsianus, C. hebephyllus, C. integerrimus, C. mongolicus, C. multiflorus, C. submultiflorus, and C. tenuipes) and included the available complete plastomes in a phylogenetic analysis to determine the origin of C. wilsonii, which is endemic to Ulleung Island, Korea. Furthermore, based on 15 representative lineages within the genus, we carried out the first comparative analysis of Cotoneaster plastid genomes to gain an insight into their molecular evolution. The plastomes were highly conserved, with sizes ranging from 159,595 bp (C. tenuipes) to 160,016 bp (C. hebephyllus), and had a GC content of 36.6%. The frequency of codon usage showed similar patterns among the 15 Cotoneaster species, and 24 of the 35 protein-coding genes were predicted to undergo RNA editing. Eight of the 76 common protein-coding genes, including ccsA, matK, ndhD, ndhF, ndhK, petA, rbcL, and rpl16, were positively selected, implying their potential roles in adaptation and speciation. Of the 35 protein-coding genes, 24 genes (15 photosynthesis-related, seven self-replications, and three others) were found to harbor RNA editing sites. Furthermore, several mutation hotspots were identified, including trnG-UCC/trnR-UCU/atpA and trnT-UGU/trnL-UAA. Maximum likelihood analysis based on 57 representative plastomes of Cotoneaster and two Heteromeles plastomes as outgroups revealed two major lineages within the genus, which roughly correspond to two subgenera, Chaenopetalum and Cotoneaster. The Ulleung Island endemic, C. wilsonii, shared its most recent common ancestor with two species, C. schantungensis and C. zabelii, suggesting its potential origin from geographically close members of the subgenus Cotoneaster, section Integerrimi.
Collapse
|