1
|
Wang R, Li B, Cai S, Ding Y, Shi M, Jin T, Lin W, Liu P. Genetic Diversity of Ralstonia solanacearum Causing Tobacco Bacterial Wilt in Fujian Province and Identification of Biocontrol Streptomyces sp. PLANT DISEASE 2024; 108:1946-1958. [PMID: 38499975 DOI: 10.1094/pdis-08-23-1604-sr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Tobacco bacterial wilt is a highly destructive soilborne disease caused by the Ralstonia solanacearum species complex, exhibiting a significant risk to global flue-cured tobacco cultivation and resulting in substantial economic loss. In this study, 77 isolates were collected from three prominent flue-cured tobacco cultivation areas in Fujian, China (Nanping, Sanming, and Longyan), in 2021 and 2022. The isolated strains were classified through phylotype-specific multiplex polymerase chain reaction (Pmx-PCR) and physiological tests. The analysis showed that all the strains were associated with phylotype I, race 1, and biovar III. Subsequent phylogenetic analysis using partial egl gene sequences classified the 77 isolates into 5 distinct sequevars: 13, 15, 16, 17, and 34. Notably, a remarkable predominance of sequevar 15 was observed in Fujian Province, while sequevar 16 was first reported on tobacco in China, which was identified in other plants, expanding the understanding of its host range and distribution in the country. In addition, a Streptomyces strain extracted from the rhizosphere soil of tobacco was found to inhibit the growth of multiple sequevars of tobacco R. solanacearum, indicating its broad-spectrum antagonistic properties. Furthermore, pot experiments showed that the strain St35 effectively controlled tobacco bacterial wilt. The isolate St35 was conclusively identified as Streptomyces gancidicus according to the morphological and genetic features. In summary, the present study demonstrated the genetic diversity and distribution of tobacco R. solanacearum strains in the Fujian province of China, as well as the identification of a candidate biological control agent for the management of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Songling Cai
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yingfu Ding
- Nanping Branch, Fujian Tobacco Company, Nanping 353000, China
| | - Mingyue Shi
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Ting Jin
- Xiamen Chanke Bioengineering Co., Ltd., Xiamen 361000, China
| | - Wei Lin
- Nanping Branch, Fujian Tobacco Company, Nanping 353000, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
2
|
Abdelghany WR, Yassin AS, Abu-Ellail FFB, Al-Khalaf AA, Omara RI, Hozzein WN. Combatting Sugar Beet Root Rot: Streptomyces Strains' Efficacy against Fusarium oxysporum. PLANTS (BASEL, SWITZERLAND) 2024; 13:311. [PMID: 38276766 PMCID: PMC10820957 DOI: 10.3390/plants13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Sugar beet root rot disease triggered by Fusarium oxysporum f. sp. radicis-betae is a destructive disease and dramatically affects the production and quality of the sugar beet industry. Employing beneficial microorganisms as a biocontrol strategy represents an eco-friendly and sustainable approach to combat various plant diseases. The distinct aspect of this study was to assess the antifungal and plant growth-promoting capabilities of recently isolated Streptomyces to treat sugar beet plants against infection with the phytopathogen F. oxysporum. Thirty-seven actinobacterial isolates were recovered from the rhizosphere of healthy sugar beet plants and screened for their potential to antagonize F. oxysporum in vitro. Two isolates SB3-15 and SB2-23 that displayed higher antagonistic effects were morphologically and molecularly identified as Streptomyces spp. Seed treatment with the fermentation broth of the selected Streptomyces strains SB3-15 and SB2-23 significantly reduced disease severity compared to the infected control in a greenhouse experiment. Streptomyces SB2-23 exhibited the highest protective activity with high efficacy ranging from 91.06 to 94.77% compared to chemical fungicide (86.44 to 92.36%). Furthermore, strain SB2-23 significantly increased plant weight, root weight, root length, and diameter. Likewise, it improves sucrose percentage and juice purity. As a consequence, the strain SB2-23's intriguing biocontrol capability and sugar beet root growth stimulation present promising prospects for its utilization in both plant protection and enhancement strategies.
Collapse
Affiliation(s)
- Walaa R. Abdelghany
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Abeer S. Yassin
- Sugar Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | | | - Areej A. Al-Khalaf
- Biology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reda I. Omara
- Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
3
|
Tran TM, Atanasova V, Tardif C, Richard-Forget F. Stilbenoids as Promising Natural Product-Based Solutions in a Race against Mycotoxigenic Fungi: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5075-5092. [PMID: 36951872 DOI: 10.1021/acs.jafc.3c00407] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exposure to mycotoxins can pose a variety of adverse health effects to mammals. Despite dozens of mycotoxin decontamination strategies applied from pre- to postharvest stages, it is always challenging to guarantee a safe level of these natural toxic compounds in food and feedstuffs. In the context of the increased occurrence of drug-resistance strains of mycotoxin-producing fungi driven by the overuse of fungicides, the search for new natural-product-based solutions is a top priority. This review aims to shed a light on the promising potential of stilbenoids extracted from renewable agricultural wastes (e.g., grape canes and forestry byproducts) as antimycotoxin agents. Deeper insights into the mode of actions underlying the bioactivity of stilbenoid molecules against fungal pathogens, together with their roles in plant defense responses, are provided. Safety aspects of these natural compounds on humans and ecology are discussed. Perspectives on the development of stilbenoid-based formulations using encapsulation technology, which allows the bypassing of the limitations related to stilbenoids, particularly low aqueous solubility, are addressed. Optimistically, the knowledge gathered in the present review supports the use of currently underrated agricultural byproducts to produce stilbenoid-abundant extracts with a high efficiency in the mitigation of mycotoxins in food and feedstuffs.
Collapse
Affiliation(s)
- Trang Minh Tran
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Vessela Atanasova
- RU 1264 Mycology and Food Safety (MycSA), INRAE, 33882 Villenave d'Ornon, France
| | - Charles Tardif
- UFR Sciences Pharmaceutiques, INRAE, Bordeaux INP, UR OENOLOGIE, EA 4577, USC 1366, ISVV, Univ. Bordeaux, 33882 Villenave d'Ornon, France
| | | |
Collapse
|
4
|
Sánchez de la Nieta R, Santamaría RI, Díaz M. Two-Component Systems of Streptomyces coelicolor: An Intricate Network to Be Unraveled. Int J Mol Sci 2022; 23:ijms232315085. [PMID: 36499414 PMCID: PMC9739842 DOI: 10.3390/ijms232315085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
Bacteria of the Streptomyces genus constitute an authentic biotech gold mine thanks to their ability to produce a myriad of compounds and enzymes of great interest at various clinical, agricultural, and industrial levels. Understanding the physiology of these organisms and revealing their regulatory mechanisms is essential for their manipulation and application. Two-component systems (TCSs) constitute the predominant signal transduction mechanism in prokaryotes, and can detect a multitude of external and internal stimuli and trigger the appropriate cellular responses for adapting to diverse environmental conditions. These global regulatory systems usually coordinate various biological processes for the maintenance of homeostasis and proper cell function. Here, we review the multiple TCSs described and characterized in Streptomyces coelicolor, one of the most studied and important model species within this bacterial group. TCSs are involved in all cellular processes; hence, unravelling the complex regulatory network they form is essential for their potential biotechnological application.
Collapse
|
5
|
Wheat Seed Coating with Streptomyces sp. Strain DEF39 Spores Protects against Fusarium Head Blight. Microorganisms 2022; 10:microorganisms10081536. [PMID: 36013954 PMCID: PMC9415289 DOI: 10.3390/microorganisms10081536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Streptomycetes are promising candidates for the biological control of Fusarium Head Blight (FHB) in wheat. Studies involving the use of streptomycetes as biological control agents (BCAs) have been limited to the application when the wheat plant is developed, close to the infection on the spike during flowering. Here, we tested the effects of seed treatment with the Streptomyces sp. DEF39 spores before sowing on FHB symptoms’ development. The seed treatment protected the plant from infection by Fusarium graminearum by 49% (p = 0.04). We traced Streptomyces sp. DEF39 in plant organs using strain-specific primers here developed, showing that the streptomycete acts as an endophyte, colonizing the plant tissues up to the spike as well as the roots. This work suggests that it is possible to use a streptomycete as a seed coating BCA, able to partially protect wheat from FHB disease.
Collapse
|
6
|
Shi G, Wang S, Wang P, Zhan J, Tang Y, Zhao G, Li F, Ge X, Wu J. Cotton miR393-TIR1 Module Regulates Plant Defense Against Verticillium dahliae via Auxin Perception and Signaling. FRONTIERS IN PLANT SCIENCE 2022; 13:888703. [PMID: 35592575 PMCID: PMC9111529 DOI: 10.3389/fpls.2022.888703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Plant auxin is essential in plant growth and development. However, the molecular mechanisms of auxin involvement in plant immunity are unclear. Here, we addressed the function of the cotton (Gossypium hirsutum) miR393-TIR1 module in plant defense against Verticillium dahliae infection via auxin perception and signaling. GhTIR1 was directedly cleaved by ghr-miR393 according to mRNA degradome data, 5'-RACE analysis, and a GUS reporter assay. Ghr-miR393 knockdown significantly increased plant susceptibility to V. dahliae compared to the control, while ghr-miR393 overexpression and GhTIR1 knockdown significantly increased plant resistance. External indole-3-acetic acid (IAA) application significantly enhanced susceptibility to V. dahliae in ghr-miR393 knockdown and control plants compared to mock treatment, and only slightly increased susceptibility in overexpressing ghr-miR393 and GhTIR1-silenced plants. Application of external PEO-IAA (an auxin antagonist) had a contrary trend with IAA application. Based on yeast two-hybrid and bimolecular fluorescence complementation assays, GhTIR1 interacted with GhIAA14 in the nucleus, and GhIAA14 knockdown reduced plant resistance to V. dahliae infection. The results suggested that the ghr-miR393-GhTIR1 module regulates plant defense via auxin perception and signaling. Additionally, simultaneous knockdown of GhTIR1 and GhICS1 significantly increased plant susceptibility to V. dahliae compared to the control, indicating that salicylic acid (SA) accumulation is vital for the ghr-miR393-GhTIR1 module to regulates plant resistance. Transcriptome data also demonstrated that GhTIR1 knockdown significantly downregulated expression of auxin-related genes and upregulated expression of SA-related genes. Overall, the ghr-miR393-GhTIR1 module participates in plant response to V. dahliae infection via IAA perception and signaling partially depending on the SA defense pathway.
Collapse
Affiliation(s)
- Gege Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Saisai Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Peng Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ye Tang
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ge Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoyang Ge
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiahe Wu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- The State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|