1
|
Raut VK, Yadav A, Kaur V, Rao M, Pathania P, Wankhede D, Singh M, Singh GP. Pollen-pistil interactions in divergent wide crosses lead to spatial and temporal pre-fertilization reproductive barrier in flax (Linum usitatissimum L.). Sci Rep 2025; 15:6806. [PMID: 40000683 PMCID: PMC11861275 DOI: 10.1038/s41598-025-90046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Linseed, has been a source of natural fiber for textile industries since its domestication. However, despite being the potential source of trait reservoir, the use of Linum wild genetic resources for the improvement of economic traits are not exploited widely. This is mainly due to the degree of genetic divergence that exists among the interspecific ecotypes causing crossability issues. Self-incompatibility due to the occurrence of heterostyly is very well reported in distantly related crop wild relatives of Linum and, the mechanism of self-incompatibility between different floral morphs is also studied. However, pollen germination and tube growth responses in the interspecific crosses are rarely studied. Thus, the present study was exclusively carried out to assess the major pre-zygotic barriers and their effect on pollen germination on foreign stigma using fluorescent microscopy of aniline blue stain-aided technology, to understand how the species barriers operate on pollen germination and pollen tube growth. The study revealed that the pollen-pistil interaction in the wide crosses among L. usitatissimum X L. grandiflorum was regulated by both temporal and spatial pre-fertilization barriers. Callose deposition within 2 h after pollination (HAP) at the stigma surface, was the major cause inhibiting pollen germination. Various kinds of aberrations started appearing during the 2-4 HAP. The complexity of interspecific hybridization was observed in terms of arrest of pollen tube (PT) growth in the ovary, ruptured, twisted and swollen pollen tube tip, tube growth in reverse direction, convoluted and terminated growth patterns. Inconsistent growth rates of pollen tubes to reach various stylar regions emphasizes the importance of studying these wild relatives for potential agricultural advancements. The results show that while distant hybridization with L. grandiflorum is less efficient, pollen tubes can still navigate the ovular tissues, albeit with some delay. This finding opens avenues for investigating factors that hinder viable seed formation, enhancing our understanding of reproductive success in distant hybridization with this species.
Collapse
Affiliation(s)
- Vijaykumar Kailasrao Raut
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
- Faculty of Agricultural Sciences and Allied Industries, Rama University, Kanpur, UP, India
| | - Aneeta Yadav
- Faculty of Agricultural Sciences and Allied Industries, Rama University, Kanpur, UP, India
| | - Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Mahesh Rao
- Indian Council of Agricultural Research, National Institute for Plant Biotechnology, (ICAR-NIPB), New Delhi, India
| | - Pooja Pathania
- Division of Genomic Resources, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Dhammaprakash Wankhede
- Division of Genomic Resources, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India.
| | - Gyanendra Pratap Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research, National Bureau of Plant Genetic Resources (ICAR-NBPGR), New Delhi, India
| |
Collapse
|
2
|
Zhu L, Li G, Guo D, Li X, Xue M, Jiang H, Yan Q, Xie F, Ning X, Xie L. Genome-wide association study and genomic selection of flax powdery mildew in Xinjiang Province. FRONTIERS IN PLANT SCIENCE 2024; 15:1403276. [PMID: 38863531 PMCID: PMC11165360 DOI: 10.3389/fpls.2024.1403276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Flax powdery mildew (PM), caused by Oidium lini, is a globally distributed fungal disease of flax, and seriously impairs its yield and quality. To data, only three resistance genes and a few putative quantitative trait loci (QTL) have been reported for flax PM resistance. To dissect the resistance mechanism against PM and identify resistant genetic regions, based on four years of phenotypic datasets (2017, 2019 to 2021), a genome-wide association study (GWAS) was performed on 200 flax core accessions using 674,074 SNPs and 7 models. A total of 434 unique quantitative trait nucleotides (QTNs) associated with 331 QTL were detected. Sixty-four loci shared in at least two datasets were found to be significant in haplotype analyses, and 20 of these sites were shared by multiple models. Simultaneously, a large-effect locus (qDI 11.2) was detected repeatedly, which was present in the mapping study of flax pasmo resistance loci. Oil flax had more QTL with positive-effect or favorable alleles (PQTL) and showed higher PM resistance than fiber flax, indicating that effects of these QTL were mainly additive. Furthermore, an excellent resistant variety C120 was identified and can be used to promote planting. Based on 331 QTLs identified through GWAS and the statistical model GBLUP, a genomic selection (GS) model related to flax PM resistance was constructed, and the prediction accuracy rate was 0.96. Our results provide valuable insights into the genetic basis of resistance and contribute to the advancement of breeding programs.
Collapse
Affiliation(s)
- Leilei Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Gongze Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Zhengzhou, China
| | - Dongliang Guo
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Department of Basic Medicine, Xinjiang Second Medical College, Karamay, China
| | - Min Xue
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Haixia Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
- Key Laboratory of Plant Stress Biology in Arid Land, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Qingcheng Yan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Fang Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xuefei Ning
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Liqiong Xie
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
3
|
Pushkova EN, Borkhert EV, Novakovskiy RO, Dvorianinova EM, Rozhmina TA, Zhuchenko AA, Zhernova DA, Turba AA, Yablokov AG, Sigova EA, Krasnov GS, Bolsheva NL, Melnikova NV, Dmitriev AA. Selection of Flax Genotypes for Pan-Genomic Studies by Sequencing Tagmentation-Based Transcriptome Libraries. PLANTS (BASEL, SWITZERLAND) 2023; 12:3725. [PMID: 37960081 PMCID: PMC10650069 DOI: 10.3390/plants12213725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Flax (Linum usitatissimum L.) products are used in the food, pharmaceutical, textile, polymer, medical, and other industries. The creation of a pan-genome will be an important advance in flax research and breeding. The selection of flax genotypes that sufficiently cover the species diversity is a crucial step for the pan-genomic study. For this purpose, we have adapted a method based on Illumina sequencing of transcriptome libraries prepared using the Tn5 transposase (tagmentase). This approach reduces the cost of sample preparation compared to commercial kits and allows the generation of a large number of cDNA libraries in a short time. RNA-seq data were obtained for 192 flax plants (3-6 individual plants from 44 flax accessions of different morphology and geographical origin). Evaluation of the genetic relationship between flax plants based on the sequencing data revealed incorrect species identification for five accessions. Therefore, these accessions were excluded from the sample set for the pan-genomic study. For the remaining samples, typical genotypes were selected to provide the most comprehensive genetic diversity of flax for pan-genome construction. Thus, high-throughput sequencing of tagmentation-based transcriptome libraries showed high efficiency in assessing the genetic relationship of flax samples and allowed us to select genotypes for the flax pan-genomic analysis.
Collapse
Affiliation(s)
- Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Arthur G. Yablokov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.N.P.); (E.V.B.); (R.O.N.); (E.M.D.); (D.A.Z.); (A.A.T.); (A.G.Y.); (E.A.S.); (G.S.K.); (N.L.B.)
| |
Collapse
|
4
|
Kaur V, Singh M, Wankhede DP, Gupta K, Langyan S, Aravind J, Thangavel B, Yadav SK, Kalia S, Singh K, Kumar A. Diversity of Linum genetic resources in global genebanks: from agro-morphological characterisation to novel genomic technologies - a review. Front Nutr 2023; 10:1165580. [PMID: 37324736 PMCID: PMC10267467 DOI: 10.3389/fnut.2023.1165580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Linseed or flaxseed is a well-recognized nutritional food with nutraceutical properties owing to high omega-3 fatty acid (α-Linolenic acid), dietary fiber, quality protein, and lignan content. Currently, linseed enjoys the status of a 'superfood' and its integration in the food chain as a functional food is evolving continuously as seed constituents are associated with lowering the risk of chronic ailments, such as heart diseases, cancer, diabetes, and rheumatoid arthritis. This crop also receives much attention in the handloom and textile sectors as the world's coolest fabric linen is made up of its stem fibers which are endowed with unique qualities such as luster, tensile strength, density, bio-degradability, and non-hazardous nature. Worldwide, major linseed growing areas are facing erratic rainfall and temperature patterns affecting flax yield, quality, and response to biotic stresses. Amid such changing climatic regimes and associated future threats, diverse linseed genetic resources would be crucial for developing cultivars with a broad genetic base for sustainable production. Furthermore, linseed is grown across the world in varied agro-climatic conditions; therefore it is vital to develop niche-specific cultivars to cater to diverse needs and keep pace with rising demands globally. Linseed genetic diversity conserved in global genebanks in the form of germplasm collection from natural diversity rich areas is expected to harbor genetic variants and thus form crucial resources for breeding tailored crops to specific culinary and industrial uses. Global genebank collections thus potentially play an important role in supporting sustainable agriculture and food security. Currently, approximately 61,000 germplasm accessions of linseed including 1,127 wild accessions are conserved in genebanks/institutes worldwide. This review analyzes the current status of Linum genetic resources in global genebanks, evaluation for agro-morphological traits, stress tolerance, and nutritional profiling to promote their effective use for sustainable production and nutrition enhancement in our modern diets.
Collapse
Affiliation(s)
- Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kavita Gupta
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jayaraman Aravind
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Boopathi Thangavel
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Kuldeep Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
5
|
Shan B, Yu G, Wang L, Liu Y, Yang C, Liu M, Sun D. Genetic Signature of Pinctada fucata Inferred from Population Genomics: Source Tracking of the Invasion in Mischief Reef of Nansha Islands. BIOLOGY 2023; 12:biology12010097. [PMID: 36671789 PMCID: PMC9855575 DOI: 10.3390/biology12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Among the anthropogenic stresses that marine ecosystems face, biological invasions are one of the major threats. Recently, as a result of increasingly intense anthropogenic disturbance, numerous marine species have been introduced to their non-native ranges. However, many introduced species have uncertain original sources. This prevents the design and establishment of methods for controlling or preventing these introduced species. In the present study, genomic sequencing and population genetic analysis were performed to detect the geographic origin of the introduced Pinctada fucata population in the Mischief Reef of the South China Sea. The results of population genetic structure analysis showed a close relationship between the Mischief Reef introduced population and the Lingshui population, indicating that Lingshui may be the potential geographical origin. Furthermore, lower heterozygosity and nucleotide diversity were observed in the introduced population in Mischief Reef, indicating lower genetic diversity than in other native populations. We also identified some selected genomic regions and genes of the introduced population, including genes related to temperature and salinity tolerance. These genes may play important roles in the adaptation of the introduced population. Our study will improve our understanding of the invasion history of the P. fucata population. Furthermore, the results of the present study will also facilitate further control and prevention of invasion in Mischief Reef, South China Sea.
Collapse
Affiliation(s)
- Binbin Shan
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Gang Yu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Liangming Wang
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Yan Liu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572000, China
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Changping Yang
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Manting Liu
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
| | - Dianrong Sun
- Key Laboratory of Marine Ranching, Ministry of Agriculture Rural Affairs, Guangzhou 510300, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China
- Correspondence: ; Tel.: +86-020-8910-0850
| |
Collapse
|
6
|
Kanapin A, Rozhmina T, Bankin M, Surkova S, Duk M, Osyagina E, Samsonova M. Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. Int J Mol Sci 2022; 23:14536. [PMID: 36498863 PMCID: PMC9738745 DOI: 10.3390/ijms232314536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we explore potential genetic factors in control of flax phenotypes associated with fiber by mining a collection of 306 flax accessions from the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. In total, 11 traits were assessed in the course of 3 successive years. A genome-wide association study was performed for each phenotype independently using six different single-locus models implemented in the GAPIT3 R package. Moreover, we applied a multivariate linear mixed model implemented in the GEMMA package to account for trait correlations and potential pleiotropic effects of polymorphisms. The analyses revealed a number of genomic variants associated with different fiber traits, implying the complex and polygenic control. All stable variants demonstrate a statistically significant allelic effect across all 3 years of the experiment. We tested the validity of the predicted variants using gene expression data available for the flax fiber studies. The results shed new light on the processes and pathways associated with the complex fiber traits, while the pinpointed candidate genes may be further used for marker-assisted selection.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Ekaterina Osyagina
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
7
|
Duk M, Kanapin A, Samsonova A, Rozhmina T, Samsonova M. Analysis of Structural Variation in Flax (Linum usitatissimum L.) Genomes. Biophysics (Nagoya-shi) 2022. [DOI: 10.1134/s0006350922020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|