1
|
Soler‐Garzón A, Miklas PN. An RNase H-Like gene complements resistance to Bean common mosaic necrosis virus in Phaseolus vulgaris. THE PLANT GENOME 2025; 18:e70046. [PMID: 40384571 PMCID: PMC12086747 DOI: 10.1002/tpg2.70046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/31/2025] [Accepted: 04/04/2025] [Indexed: 05/20/2025]
Abstract
Bean common mosaic virus and Bean common mosaic necrosis virus (BCMNV) are related positive-sense RNA potyviruses that limit the production of common bean (Phaseolus vulgaris L.) worldwide. Potyviruses infect other legume species, such as Glycine max, which can serve as a source of orthologous resistance genes. The bc-1 on chromosome Pv03 in P. vulgaris and Rsv4 on Gm02 in G. max are syntenic gene regions that confer resistance to Potyviruses. Receptor-like kinases underlie both gene regions, and a linked RNase H-Like protein, which enhances potyvirus resistance, was recently associated with Rsv4. We sought to determine if RNase H-Like encoding genes are similarly located in the bc-1 region and enhance resistance to BCMNV. Synteny analysis between P. vulgaris and G. max revealed RNase H-Like genes near the bc-1 locus. Positional cloning among reference genomes and select genotypes, along with linkage mapping in recombinant inbred line and F2 populations, identified the RNase H-Like 1 gene, which enhanced resistance to BCMNV NL-3 strain when combined with I, bc-1, and bc-u or with bc-1 and bc-u genes by reducing systemic spread of susceptible symptoms in non-inoculated leaves. A single nucleotide polymorphism marker, G03_4166082, was developed to track the resistant and susceptible alleles for RNase H-Like 1 in breeding programs. Overall, this study advances the understanding of the complex mechanisms underlying BCMNV resistance in common bean.
Collapse
Affiliation(s)
- Alvaro Soler‐Garzón
- Irrigated Agriculture Research and Extension CenterWashington State UniversityProsserWashingtonUSA
| | - Phillip N. Miklas
- USDA‐ARS Grain Legume Genetics and Physiology Research UnitProsserWashingtonUSA
| |
Collapse
|
2
|
Pollari ME, Aspelin WWE, Wang L, Mäkinen KM. The Molecular Maze of Potyviral and Host Protein Interactions. Annu Rev Virol 2024; 11:147-170. [PMID: 38848589 DOI: 10.1146/annurev-virology-100422-034124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The negative effects of potyvirus diseases on the agricultural industry are extensive and global. Understanding how protein-protein interactions contribute to potyviral infections is imperative to developing resistant varieties that help counter the threat potyviruses pose. While many protein-protein interactions have been reported, only a fraction are essential for potyviral infection. Accumulating evidence demonstrates that potyviral infection processes are interconnected. For instance, the interaction between the eukaryotic initiation factor 4E (eIF4E) and viral protein genome-linked (VPg) is crucial for both viral translation and protecting viral RNA (vRNA). Additionally, recent evidence for open reading frames on the reverse-sense vRNA and for nonequimolar expression of viral proteins has challenged the previous polyprotein expression model. These discoveries will surely reveal more about the potyviral protein interactome. In this review, we present a synthesis of the potyviral infection cycle and discuss influential past discoveries and recent work on protein-protein interactions in various infection processes.
Collapse
Affiliation(s)
- Maija E Pollari
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - William W E Aspelin
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Linping Wang
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| | - Kristiina M Mäkinen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland;
| |
Collapse
|
3
|
Parker T, Bolt T, Williams T, Penmetsa RV, Mulube M, Celebioglu B, Palkovic A, Jochua CN, Del Mar Rubio Wilhelmi M, Lo S, Bornhorst G, Tian L, Kamfwa K, Farmer A, Diepenbrock C, Gepts P. Seed color patterns in domesticated common bean are regulated by MYB-bHLH-WD40 transcription factors and temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2765-2781. [PMID: 39152711 DOI: 10.1111/tpj.16947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 08/19/2024]
Abstract
Seed colors and color patterns are critical for the survival of wild plants and the consumer appeal of crops. In common bean, a major global staple, these patterns are also essential in determining market classes, yet the genetic and environmental control of many pigmentation patterns remains unresolved. In this study, we genetically mapped variation for several important seed pattern loci, including T, Bip, phbw, and Z, which co-segregated with candidate genes PvTTG1, PvMYC1, PvTT8, and PvTT2, respectively. Proteins encoded by these genes are predicted to work together in MYB-bHLH-WD40 (MBW) complexes, propagating flavonoid biosynthesis across the seed coat as observed in Arabidopsis. Whole-genome sequencing of 37 accessions identified mutations, including seven unique parallel mutations in T (PvTTG1) and non-synonymous SNPs in highly conserved residues in bipana (PvMYC1) and z (PvTT2). A 612 bp intron deletion in phbw (PvTT8) eliminated motifs conserved since the Papilionoideae origin and corresponded to a 20-fold reduction in transcript abundance. In multi-location field trials of seven varieties with partial seed coat pigmentation patterning, the pigmented seed coat area correlated positively with ambient temperature, with up to 11-fold increases in the pigmented area from the coolest to the warmest environments. In controlled growth chamber conditions, an increase of 4°C was sufficient to cause pigmentation on an average additional 21% of the seed coat area. Our results shed light on key steps of flavonoid biosynthesis in common bean. They will inform breeding efforts for seed coat color/patterning to improve consumer appeal in this nutritious staple crop.
Collapse
Affiliation(s)
- Travis Parker
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Tayah Bolt
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Troy Williams
- Department of Plant Sciences, University of California, Davis, California, USA
| | - R Varma Penmetsa
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Mwiinga Mulube
- Department of Plant Sciences, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Burcu Celebioglu
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Antonia Palkovic
- Department of Plant Sciences, University of California, Davis, California, USA
| | | | | | - Sassoum Lo
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Gail Bornhorst
- Department of Biological and Agricultural Engineering, University of California, Davis, California, USA
| | - Li Tian
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Kelvin Kamfwa
- Department of Plant Sciences, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | | | - Paul Gepts
- Department of Plant Sciences, University of California, Davis, California, USA
| |
Collapse
|
4
|
Soler-Garzón A, McClean PE, Miklas PN. The alleles bc-u d and bc-u r (previously bc-4 gene), representing coding mutations within Vps4 AAA+ ATPase ESCRT protein, interact with other genes to condition resistance to BCMV and BCMNV in common bean. THE PLANT GENOME 2024; 17:e20421. [PMID: 38087438 DOI: 10.1002/tpg2.20421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 03/22/2024]
Abstract
Bean common mosaic virus (BCMV) and bean common mosaic necrosis virus (BCMNV) have a damaging impact on global common bean (Phaseolus vulgaris L.) cultivation, causing potential yield losses of over 80%. The primary strategy for controlling these viruses is through host plant resistance. This research aimed to identify and validate structural variations for the bc-ud gene as revealed by long-read sequencing, develop an efficient DNA marker to assist selection of bc-ud in snap and dry beans, and examine the interactions between the bc-ud allele and other BCMV resistance genes. A gene (Phvul.005G125100) model on chromosome Pv05, encoding a vacuolar protein-sorting 4 (Vps4) AAA+ ATPase endosomal sorting complexes required for transport (ESCRT) protein, was identified as the best candidate gene for bc-ud. An 84-bp repetitive insertion variant within the gene, exhibited 100% co-segregation with the bc-ud resistance allele across 264 common bean accessions. The 84-bp repetitive insertion was labeled with an indel marker IND_05_36225873 which was useful for tracking the bc-ud allele across diverse germplasm. A different single nucleotide polymorphism variant within the same candidate gene was associated with the bc-4 gene. Segregation in F2 populations confirmed bc-ud and bc-4 were alleles, so bc-4 was renamed bc-ur to fit gene nomenclature guidelines. The interactions of bc-ud and bc-ur with other resistance genes, such as bc-1 (receptor-like kinase on Pv03) and bc-2 (Vps4 AAA+ ATPase ESCRT protein on Pv11), validated gene combinations in the differential "host groups" effective against specific BCMV/BCMNV "pathogroups." These findings increase our understanding of the Bc-u locus, and enhance our ability to develop more resilient bean varieties through marker-assisted selection, reducing the impact of BCMV and BCMNV.
Collapse
Affiliation(s)
- Alvaro Soler-Garzón
- Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, Washington, USA
| | - Phillip E McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Phillip N Miklas
- Grain Legume Genetics and Physiology Research Unit, USDA-ARS, Prosser, Washington, USA
| |
Collapse
|
5
|
Zhou L, Tian Y, Ren L, Yan Z, Jiang J, Shi Q, Geng C, Li X. A natural substitution of a conserved amino acid in eIF4E confers resistance against multiple potyviruses. MOLECULAR PLANT PATHOLOGY 2024; 25:e13418. [PMID: 38279849 PMCID: PMC10777747 DOI: 10.1111/mpp.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/29/2024]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E), which plays a pivotal role in initiating translation in eukaryotic organisms, is often hijacked by the viral genome-linked protein to facilitate the infection of potyviruses. In this study, we found that the naturally occurring amino acid substitution D71G in eIF4E is widely present in potyvirus-resistant watermelon accessions and disrupts the interaction between watermelon eIF4E and viral genome-linked protein of papaya ringspot virus-watermelon strain, zucchini yellow mosaic virus or watermelon mosaic virus. Multiple sequence alignment and protein modelling showed that the amino acid residue D71 located in the cap-binding pocket of eIF4E is strictly conserved in many plant species. The mutation D71G in watermelon eIF4E conferred resistance against papaya ringspot virus-watermelon strain and zucchini yellow mosaic virus, and the equivalent mutation D55G in tobacco eIF4E conferred resistance to potato virus Y. Therefore, our finding provides a potential precise target for breeding plants resistant to multiple potyviruses.
Collapse
Affiliation(s)
- Ling‐Xi Zhou
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Yan‐Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Li‐Li Ren
- Science and Technology Research Center of China CustomsBeijingChina
| | - Zhi‐Yong Yan
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Jun Jiang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Qing‐Hua Shi
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'anChina
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
| | - Xiang‐Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anChina
- Institute of Plant ProtectionShandong Academy of Agricultural SciencesJi'nanChina
| |
Collapse
|
6
|
Bornowski N, Hart JP, Palacios AV, Ogg B, Brick MA, Hamilton JP, Beaver JS, Buell CR, Porch T. Genetic variation in a tepary bean (Phaseolus acutifolius A. Gray) diversity panel reveals loci associated with biotic stress resistance. THE PLANT GENOME 2023; 16:e20363. [PMID: 37332263 DOI: 10.1002/tpg2.20363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/20/2023]
Abstract
Tepary bean (Phaseolus acutifolius A. Gray), indigenous to the arid climates of northern Mexico and the Southwest United States, diverged from common bean (Phaseolus vulgaris L.), approximately 2 million years ago and exhibits a wide range of resistance to biotic stressors. The tepary genome is highly syntenic to the common bean genome providing a foundation for discovery and breeding of agronomic traits between these two crop species. Although a limited number of adaptive traits from tepary bean have been introgressed into common bean, hybridization barriers between these two species required the development of bridging lines to alleviate this barrier. Thus, to fully utilize the extant tepary bean germplasm as both a crop and as a donor of adaptive traits, we developed a diversity panel of 422 cultivated, weedy, and wild tepary bean accessions which were then genotyped and phenotyped to enable population genetic analyses and genome-wide association studies for their response to a range of biotic stressors. Population structure analyses of the panel revealed eight subpopulations and the differentiation of botanical varieties within P. acutifolius. Genome-wide association studies revealed loci and candidate genes underlying biotic stress resistance including quantitative trait loci for resistance to weevils, common bacterial blight, Fusarium wilt, and bean common mosaic necrosis virus that can be harnessed not only for tepary bean but also common bean improvement.
Collapse
Affiliation(s)
- Nolan Bornowski
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - John P Hart
- USD-ARS-Tropical Agriculture Research Station, Mayagüez, Puerto Rico, USA
| | | | - Barry Ogg
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Mark A Brick
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - James S Beaver
- Department of Agro-Environmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico, USA
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
- Department of Crop & Soil Sciences, University of Georgia, Athens, Georgia, USA
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, USA
| | - Timothy Porch
- USD-ARS-Tropical Agriculture Research Station, Mayagüez, Puerto Rico, USA
| |
Collapse
|
7
|
Zlobin N, Taranov V. Plant eIF4E isoforms as factors of susceptibility and resistance to potyviruses. FRONTIERS IN PLANT SCIENCE 2023; 14:1041868. [PMID: 36844044 PMCID: PMC9950400 DOI: 10.3389/fpls.2023.1041868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potyviruses are the largest group of plant-infecting RNA viruses that affect a wide range of crop plants. Plant resistance genes against potyviruses are often recessive and encode translation initiation factors eIF4E. The inability of potyviruses to use plant eIF4E factors leads to the development of resistance through a loss-of-susceptibility mechanism. Plants have a small family of eIF4E genes that encode several isoforms with distinct but overlapping functions in cell metabolism. Potyviruses use distinct eIF4E isoforms as susceptibility factors in different plants. The role of different members of the plant eIF4E family in the interaction with a given potyvirus could differ drastically. An interplay exists between different members of the eIF4E family in the context of plant-potyvirus interactions, allowing different eIF4E isoforms to modulate each other's availability as susceptibility factors for the virus. In this review, possible molecular mechanisms underlying this interaction are discussed, and approaches to identify the eIF4E isoform that plays a major role in the plant-potyvirus interaction are suggested. The final section of the review discusses how knowledge about the interaction between different eIF4E isoforms can be used to develop plants with durable resistance to potyviruses.
Collapse
|
8
|
Çelik A, Emiralioğlu O, Yeken MZ, Çiftçi V, Özer G, Kim Y, Baloch FS, Chung YS. A novel study on bean common mosaic virus accumulation shows disease resistance at the initial stage of infection in Phaseolus vulgaris. Front Genet 2023; 14:1136794. [PMID: 37021006 PMCID: PMC10067576 DOI: 10.3389/fgene.2023.1136794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Accurate and early diagnosis of bean common mosaic virus (BCMV) in Phaseolus vulgaris tissues is critical since the pathogen can spread easily and have long-term detrimental effects on bean production. The use of resistant varieties is a key factor in the management activities of BCMV. The study reported here describes the development and application of a novel SYBR Green-based quantitative real-time PCR (qRT-PCR) assay targeting the coat protein gene to determine the host sensitivity to the specific NL-4 strain of BCMV. The technique showed high specificity, validated by melting curve analysis, without cross-reaction. Further, the symptoms development of twenty advanced common bean genotypes after mechanical BCMV-NL-4 infection was evaluated and compared. The results showed that common bean genotypes exhibit varying levels of host susceptibility to this BCMV strain. The YLV-14 and BRS-22 genotypes were determined as the most resistant and susceptible genotypes, respectively, in terms of aggressiveness of symptoms. The accumulation of BCMV was analyzed in the resistant and susceptible genotypes 3, 6, and 9 days following the inoculation by the newly developed qRT-PCR. The mean cycle threshold (Ct) values showed that the viral titer was significantly lower in YLV-14, which was evident in both root and leaf 3 days after the inoculation. The qRT-PCR thus facilitated an accurate, specific, and feasible assessment of BCMV accumulation in bean tissues even in low virus titers, allowing novel clues in selecting resistant genotypes in the early stages of infection, which is critical for disease management. To the best of our knowledge, this is the first study of a successfully performed qRT-PCR to estimate BCMV quantification.
Collapse
Affiliation(s)
- Ali Çelik
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Orkun Emiralioğlu
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Mehmet Zahit Yeken
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Vahdettin Çiftçi
- Department of Field Crops, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
| | - Göksel Özer
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Bolu, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Yoonha Kim
- Laboratory of Crop Production, Department of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
- *Correspondence: Ali Çelik, ; Göksel Özer, ; Faheem Shehzad Baloch, ; Yong Suk Chung,
| |
Collapse
|
9
|
Agaoua A, Rittener V, Troadec C, Desbiez C, Bendahmane A, Moquet F, Dogimont C. A single substitution in Vacuolar protein sorting 4 is responsible for resistance to Watermelon mosaic virus in melon. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4008-4021. [PMID: 35394500 DOI: 10.1093/jxb/erac135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
In plants, introgression of genetic resistance is a proven strategy for developing new resistant lines. While host proteins involved in genome replication and cell to cell movement are widely studied, other cell mechanisms responsible for virus infection remain under investigated. Endosomal sorting complexes required for transport (ESCRT) play a key role in membrane trafficking in plants and are involved in the replication of several plant RNA viruses. In this work, we describe the role of the ESCRT protein CmVPS4 as a new susceptibility factor to the Potyvirus Watermelon mosaic virus (WMV) in melon. Using a worldwide collection of melons, we identified three different alleles carrying non-synonymous substitutions in CmVps4. Two of these alleles were shown to be associated with WMV resistance. Using a complementation approach, we demonstrated that resistance is due to a single non-synonymous substitution in the allele CmVps4P30R. This work opens up new avenues of research on a new family of host factors required for virus infection and new targets for resistance.
Collapse
Affiliation(s)
- Aimeric Agaoua
- Genetics and Breeding of Fruit and Vegetables (GAFL-INRAE), 84000 Avignon, France
| | - Vincent Rittener
- Genetics and Breeding of Fruit and Vegetables (GAFL-INRAE), 84000 Avignon, France
| | - Christelle Troadec
- Institute of Plant Sciences-Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | | | | | | | - Catherine Dogimont
- Genetics and Breeding of Fruit and Vegetables (GAFL-INRAE), 84000 Avignon, France
| |
Collapse
|
10
|
Exploring New Routes for Genetic Resistances to Potyviruses: The Case of the Arabidopsis thaliana Phosphoglycerates Kinases (PGK) Metabolic Enzymes. Viruses 2022; 14:v14061245. [PMID: 35746717 PMCID: PMC9228606 DOI: 10.3390/v14061245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
The development of recessive resistance by loss of susceptibility is a consistent strategy to combat and limit damages caused by plant viruses. Susceptibility genes can be turned into resistances, a feat that can either be selected among the plant’s natural diversity or engineered by biotechnology. Here, we summarize the current knowledge on the phosphoglycerate kinases (PGK), which have emerged as a new class of susceptibility factors to single-stranded positive RNA viruses, including potyviruses. PGKs are metabolic enzymes involved in glycolysis and the carbon reduction cycle, encoded by small multigene families in plants. To fulfil their role in the chloroplast and in the cytosol, PGKs genes encode differentially addressed proteins. Here, we assess the diversity and homology of chloroplastic and cytosolic PGKs sequences in several crops and review the current knowledge on their redundancies during plant development, taking Arabidopsis as a model. We also show how PGKs have been shown to be involved in susceptibility—and resistance—to viruses. Based on this knowledge, and drawing from the experience with the well-characterized translation initiation factors eIF4E, we discuss how PGKs genes, in light of their subcellular localization, function in metabolism, and susceptibility to viruses, could be turned into efficient genetic resistances using genome editing techniques.
Collapse
|