1
|
Li G, Shi X, Lin Q, Lv M, Chen J, Wen Y, Feng Z, Azam SM, Cheng Y, Wang S, Cao S. Genome-Wide Identification and Expression Analysis of Heat Shock Transcription Factors in Camellia sinensis Under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:697. [PMID: 40094585 PMCID: PMC11902171 DOI: 10.3390/plants14050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
The tea plant (Camellia sinensis) is an economically important crop that plays an important role not only in the beverage industry but also in the pharmaceutical industry. The environment has a great influence on the quality of the tea plant. Heat shock factors (Hsfs) are transcriptional regulators that control the plant response to adversity. However, only a limited number of studies have reported the Hsf gene in Camellia sinensis, and most of these reports involve high-temperature, drought, and salt stress. Research on light, dark, and cold stress is limited. In this study, 22 CsHsf genes were obtained by whole genome sequencing and found to be located on 11 chromosomes. In addition, the gene structure, protein motif, and phylogeny were studied. We classified the genes into three major subfamilies: CsHsfA, CsHsfB, and CsHsfC. Interestingly, we found that there was more alignment between CsHsf and Hsf genes in dicotyledons, including Arabidopsis thaliana and Solanum lycopersicum, than in the monocotyledon Oryza sativa. The expression of many CsHsf genes was affected by low-temperature, light, and dark abiotic stresses. Notably, CsHsf15 and CsHsf16 showed high induction rates under both light and cold stress, and both genes carried cis-acting elements associated with light and low-temperature responses. These results lay a solid groundwork for further investigations into the involvement of CsHsf genes in the response of Camellia sinensis to abiotic stresses.
Collapse
Affiliation(s)
- Guimin Li
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (G.L.); (J.C.)
| | - Xinying Shi
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.S.); (Q.L.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.S.); (Q.L.)
| | - Mengmeng Lv
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.W.)
| | - Jing Chen
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (G.L.); (J.C.)
| | - Yingxin Wen
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.W.)
| | - Zhiyi Feng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (S.M.A.)
| | - Syed Muhammad Azam
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.F.); (S.M.A.)
| | - Yan Cheng
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (G.L.); (J.C.)
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (Y.W.)
| |
Collapse
|
2
|
Li R, Guo X, Qi Y, Wang Y, Wang J, Zhang P, Cheng S, He W, Zhao T, Li Y, Li L, Ji J, He A, Ai Z. Soil Amendments and Slow-Release Urea Improved Growth, Physiological Characteristics, and Yield of Salt-Tolerant Rice Under Salt Stress Conditions. PLANTS (BASEL, SWITZERLAND) 2025; 14:543. [PMID: 40006802 PMCID: PMC11859376 DOI: 10.3390/plants14040543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
The present study aimed to investigate the effects of different soil amendments coupled with nitrogen fertilizer on the morpho-physiological characteristics and yield of salt-tolerant rice under saline conditions. The soil amendments, i.e., S1: zeolite amendment, S2: coconut coir amendment, S3: humic acid amendment, and S0: no amendment, and fertilizer treatments, i.e., N1: urea, N2: slow-release urea, and N0: no N fertilizer, were kept in main plots and sub-plots, respectively, in a split-plot design. The salt-tolerant variety 'Shuangliangyou 138' was exposed to 0.3% salt irrigation water. The results showed that during the entire growth period, compared to S0, the S1 and S3 treatments increased the SPAD values by an average of 6.3%and 5.5%, respectively, the leaf area index by an average of 24.5% and 19.8%, the canopy interception rate by an average of 11.5% and 4.1%, and the aboveground biomass by an average of 36.8% and 13.9%, respectively. Moreover, under S1 and S3 conditions, the tiller number per square meter, leaf water potential, leaf water content, and chlorophyll contents were also improved under the slow-release urea than urea. Moreover, slow-release urea promoted root vitality and nutrient absorption as well as enhanced the activity of antioxidant and nitrogen metabolism enzymes than urea under the S1 and S3 conditions. In sum, the rational application of soil amendments and slow-release urea could improve the rice productivity on saline-alkali land.
Collapse
Affiliation(s)
- Rongyi Li
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Xiayu Guo
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Yucheng Qi
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Yuyuan Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Jianbo Wang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Pengfei Zhang
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Shenghai Cheng
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Wenli He
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Tingcheng Zhao
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Yusheng Li
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Lin Li
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Junchao Ji
- College of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; (R.L.); (Y.Q.); (Y.W.); (J.W.); (P.Z.); (S.C.); (W.H.); (T.Z.); (Y.L.); (L.L.); (J.J.)
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
| | - Aibin He
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Zhiyong Ai
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya 572000, China;
- Hunan Hybrid Rice Research Center, Changsha 410125, China
| |
Collapse
|
3
|
Wang Q, Yu J, Lin W, Ahammed GJ, Wang W, Ma R, Shi M, Ge S, Mohamed AS, Wang L, Li Q, Li X. L-Theanine Metabolism in Tea Plants: Biological Functions and Stress Tolerance Mechanisms. PLANTS (BASEL, SWITZERLAND) 2025; 14:492. [PMID: 39943054 PMCID: PMC11820798 DOI: 10.3390/plants14030492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/01/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025]
Abstract
L-theanine, a unique non-protein amino acid predominantly found in tea plants (Camellia sinensis), plays a pivotal role in plant responses to abiotic stress and significantly influences tea quality. In this review, the metabolism and transport mechanisms of L-theanine are comprehensively discussed, highlighting its spatial distribution in tea plants, where it is most abundant in young leaves and less so in roots, stems, and older leaves. The biosynthesis of L-theanine occurs through the enzymatic conversion of glutamate and ethylamine, catalyzed by theanine synthase, primarily in the roots, from where it is transported to aerial parts of the plant for further catabolism. Environmental factors such as temperature, light, drought, elevated CO2, nutrient unavailability, and heavy metals significantly affect theanine biosynthesis and hydrolysis, with plant hormones and transcription factors playing crucial regulatory roles. Furthermore, it has been demonstrated that applying L-theanine exogenously improves other crops' resistance to a range of abiotic stresses, suggesting its potential utility in improving crop resilience amid climate change. This review aims to elucidate the physiological mechanisms and biological functions of L-theanine metabolism under stress conditions, providing a theoretical foundation for enhancing tea quality and stress resistance in tea cultivation.
Collapse
Affiliation(s)
- Qianying Wang
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Jingbo Yu
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Wenchao Lin
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
- Nanping Agriculture and Rural Bureau, Nanping 353199, China
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China
| | - Wenli Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Ruihong Ma
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Mengyao Shi
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
| | - Shibei Ge
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Ahmed S. Mohamed
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
- Horticultural Crops Technology Department, Agricultural and Biological Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Liyuan Wang
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| | - Qingyun Li
- College of Horticulture, Hebei Agricultural University, Baoding 310007, China; (Q.W.); (M.S.)
| | - Xin Li
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (J.Y.); (W.L.); (W.W.); (R.M.); (S.G.); (A.S.M.); (L.W.)
| |
Collapse
|
4
|
Zhang Z, Ma X, Tang D, Chen Y, Chen G, Zou J, Tan L, Tang Q, Chen W. Effects of Brassinosteroid on the Physiological Changes on Two Varieties of Tea Plants Under Salt Stress. Int J Mol Sci 2024; 25:13445. [PMID: 39769212 PMCID: PMC11677880 DOI: 10.3390/ijms252413445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Salt stress is one of the abiotic stresses affecting crop quality and yield, and the application of exogenous brassinosteroids (BRs) can be used in response to salt stress. However, the function of BR in tea plants under salt stress remains to be elucidated. This study investigated the effects of exogenous spraying of BR on the malondialdehyde, soluble sugar, soluble protein, and antioxidant enzyme activities in tea plants under salt stress and explored the expression changes in genes related to the synthesis pathways of proline and secondary metabolites (flavonoids and theanine). The results show that 200 mM NaCl solution inhibits the physiology of tea plants, but 0.2 mg/L BR could partially reduce the damage by increasing photosynthetic pigments, osmoregulatory substances (such as soluble sugar, soluble protein, and proline), and the activity of antioxidant enzymes (including peroxidase, catalase, and superoxide dismutase), while decreasing the malondialdehyde content in salt-stressed leaves. The qRT-PCR experiment also shows that the genes related to the synthesis pathways of proline and secondary metabolites (flavonoids and theanine) were upregulated under salt stress, and the proline degradation genes were downregulated, thus promoting the accumulation of proline under salt stress in both varieties. When tea plants were subjected to salt stress, the expression of genes related to the synthesis of secondary metabolites was regulated accordingly to resist salt stress. Moreover, spraying BR had an obvious effect on improving the salt tolerance of tea plants. Therefore, exploring a way to improve the salt tolerance of tea trees provides a reference for the subsequent study of its salt tolerance mechanism, which is of great significance for expanding the introduction area of tea trees, increasing the planting area of tea trees, and improving the yield and quality of tea.
Collapse
Affiliation(s)
- Zhuolu Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Xiru Ma
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Dandan Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Yiduo Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Guo Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Juanfen Zou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Liqiang Tan
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Qian Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| | - Wei Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (Z.Z.); (X.M.); (D.T.); (Y.C.); (G.C.); (J.Z.); (L.T.)
- Tea Refining and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
5
|
Chang M, Sun Y, Fang K, Fu M, Ma J, Gao Y, Chen Q, Liu L, Zhang Z, Wan X, Sun J. CsMYB73 negatively regulates theanine accumulation mediated by CsGGT2 and CsGGT4 in tea shoots ( Camellia sinensis). HORTICULTURE RESEARCH 2024; 11:uhae012. [PMID: 38464471 PMCID: PMC10923645 DOI: 10.1093/hr/uhae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Theanine metabolism is a necessary biological process during the planting and production of tea that determines tea quality. There is currently little knowledge about the transcriptional regulation of theanine metabolism in tea plants. In this study, we demonstrated that γ-glutamyl-transpeptidase CsGGT4, as a homologous protein of the theanine hydrolase CsGGT2, exhibited a higher theanine synthesis catalytic efficiency. Homology modeling and molecular docking showed that differential protein structures between CsGGT2 and CsGGT4 implied their different biological functions in tea plants. Theanine content correlated significantly with the expression of CsGGT2, CsGGT4 and the transcription factor CsMYB73 in tea shoots from different seasons. Additionally, CsMYB73 was confirmed to act as a nucleus-localized transcription factor (TF), directly interacts with the CsGGT2 and CsGGT4 promoters, serving as an activator of CsGGT2 and a suppressor of CsGGT4. Consequently, this leads to a negative association with theanine accumulation in tea shoots. Furthermore, the continuous increase in CsMYB73 produced a significantly increase in CsGGT2 expression and inhibited CsGGT4 expression. The present study reveals that the degradation of theanine has been observed to increase, concomitantly with the inhibition of theanine synthesis, resulting in a significant decline in the accumulation of theanine in tea shoots during the process of seasonal greening in 'Huangkui' leaves. This study contributes to the broader comprehension of the intricate transcriptional regulatory hierarchy that governs the metabolism of theanine in tea shoots, offering novel approaches for managing tea plantations and enhancing tea quality.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- College of Life Sciences, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Kangzhi Fang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Yang Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City 230036, Anhui Province, China
| |
Collapse
|
6
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
7
|
Fu Q, Cao H, Wang L, Lei L, Di T, Ye Y, Ding C, Li N, Hao X, Zeng J, Yang Y, Wang X, Ye M, Huang J. Transcriptome Analysis Reveals That Ascorbic Acid Treatment Enhances the Cold Tolerance of Tea Plants through Cell Wall Remodeling. Int J Mol Sci 2023; 24:10059. [PMID: 37373207 DOI: 10.3390/ijms241210059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Cold stress is a major environmental factor that adversely affects the growth and productivity of tea plants. Upon cold stress, tea plants accumulate multiple metabolites, including ascorbic acid. However, the role of ascorbic acid in the cold stress response of tea plants is not well understood. Here, we report that exogenous ascorbic acid treatment improves the cold tolerance of tea plants. We show that ascorbic acid treatment reduces lipid peroxidation and increases the Fv/Fm of tea plants under cold stress. Transcriptome analysis indicates that ascorbic acid treatment down-regulates the expression of ascorbic acid biosynthesis genes and ROS-scavenging-related genes, while modulating the expression of cell wall remodeling-related genes. Our findings suggest that ascorbic acid treatment negatively regulates the ROS-scavenging system to maintain ROS homeostasis in the cold stress response of tea plants and that ascorbic acid's protective role in minimizing the harmful effects of cold stress on tea plants may occur through cell wall remodeling. Ascorbic acid can be used as a potential agent to increase the cold tolerance of tea plants with no pesticide residual concerns in tea.
Collapse
Affiliation(s)
- Qianyuan Fu
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongli Cao
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Lu Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lei Lei
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Taimei Di
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yufan Ye
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
- Key Laboratory of Tea Science in Universities of Fujian Province, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Nana Li
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Meng Ye
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianyan Huang
- National Center for Tea Plant Improvement, Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
8
|
Chang M, Ma J, Sun Y, Tian L, Liu L, Chen Q, Zhang Z, Wan X, Sun J. γ-Glutamyl-transpeptidase CsGGT2 functions as light-activated theanine hydrolase in tea plant (Camellia sinensis L.). PLANT, CELL & ENVIRONMENT 2023; 46:1596-1609. [PMID: 36757089 DOI: 10.1111/pce.14561] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Theanine is an important secondary metabolite endowing tea with umami taste and health effects. It is essential to explore the metabolic pathway and regulatory mechanism of theanine to improve tea quality. Here, we demonstrated that the expression patterns of CsGGT2 (γ-glutamyl-transpeptidase), participated in theanine synthesis in vitro in our previous research, are significantly different in the aboveground and underground tissues of tea plants and regulated by light. Light up-regulated the expression of CsHY5, directly binding to the promoter of CsGGT2 and acting as an activator of CsGGT2, with a negative correlation with theanine accumulation. The enzyme activity assays and transient expression in Nicotiana benthamiana showed that CsGGT2, acting as bifunctional protein, synthesize and degrade theanine in vitro and in planta. The results of enzyme kinetics, Surface plasmon resonance (SPR) assays and targeted gene-silencing assays showed that CsGGT2 had a higher substrate affinity of theanine than that of ethylamine, and performed a higher theanine degradation catalytic efficiency. Therefore, light mediates the degradation of theanine in different tissues by regulating the expression of the theanine hydrolase CsGGT2 in tea plants, and these results provide new insights into the degradation of theanine mediated by light in tea plants.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Liying Tian
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
- College of Horticulture, Anhui Agricultural University, Hefei City, Anhui Province, People's Republic of China
| |
Collapse
|
9
|
Chen T, Lin S, Chen Z, Yang T, Zhang S, Zhang J, Xu G, Wan X, Zhang Z. Theanine, a tea-plant-specific non-proteinogenic amino acid, is involved in the regulation of lateral root development in response to nitrogen status. HORTICULTURE RESEARCH 2023; 10:uhac267. [PMID: 36778187 PMCID: PMC9909507 DOI: 10.1093/hr/uhac267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Glutamine synthetase type I (GSI)-like proteins are proposed to mediate nitrogen signaling and developmental fate by synthesizing yet unidentified metabolites. Theanine, the most abundant non-proteinogenic amino acid in tea plants, is the first identified metabolite synthesized by a GSI-like protein (CsTSI) in a living system. However, the roles of theanine in nitrogen signaling and development are little understood. In this study we found that nitrogen deficiency significantly reduced theanine accumulation and increased lateral root development in tea plant seedlings. Exogenous theanine feeding significantly repressed lateral root development of seedlings of tea plants and the model plant Arabidopsis. The transcriptomic analysis revealed that the differentially expressed genes in the roots under theanine feeding were enriched in the apoplastic pathway and H2O2 metabolism. Consistently, theanine feeding reduced H2O2 levels in the roots. Importantly, when co-treated with H2O2, theanine abolished the promoting effect of H2O2 on lateral root development in both tea plant and Arabidopsis seedlings. The results of histochemical assays confirmed that theanine inhibited reactive oxygen species accumulation in the roots. Further transcriptomic analyses suggested the expression of genes encoding enzymes involved in H2O2 generation and scavenging was down- and upregulated by theanine, respectively. Moreover, the expression of genes involved in auxin metabolism and signaling, cell division, and cell expansion was also regulated by theanine. Collectively, these results suggested that CsTSI-synthesized theanine is likely involved in the regulation of lateral root development, via modulating H2O2 accumulation, in response to nitrogen levels in tea plants. This study also implied that the module consisting of GSI-like protein and theanine-like metabolite is probably conserved in regulating development in response to nitrogen status in plant species.
Collapse
Affiliation(s)
| | | | | | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | | |
Collapse
|
10
|
Zou C, Lu T, Wang R, Xu P, Jing Y, Wang R, Xu J, Wan J. Comparative physiological and metabolomic analyses reveal that Fe 3O 4 and ZnO nanoparticles alleviate Cd toxicity in tobacco. J Nanobiotechnology 2022; 20:302. [PMID: 35761340 PMCID: PMC9235244 DOI: 10.1186/s12951-022-01509-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Heavy metals repress tobacco growth and quality, and engineered nanomaterials have been used for sustainable agriculture. However, the underlying mechanism of nanoparticle-mediated cadmium (Cd) toxicity in tobacco remains elusive. RESULTS Herein, we investigated the effects of Fe3O4 and ZnO nanoparticles (NPs) on Cd stress in tobacco cultivar 'Yunyan 87' (Nicotiana tabacum). Cd severely repressed tobacco growth, whereas foliar spraying with Fe3O4 and ZnO NPs promoted plant growth, as indicated by enhancing plant height, root length, shoot and root fresh weight under Cd toxicity. Moreover, Fe3O4 and ZnO NPs increased, including Zn, K and Mn contents, in the roots and/or leaves and facilitated seedling growth under Cd stress. Metabolomics analysis showed that 150 and 76 metabolites were differentially accumulated in roots and leaves under Cd stress, respectively. These metabolites were significantly enriched in the biosynthesis of amino acids, nicotinate and nicotinamide metabolism, arginine and proline metabolism, and flavone and flavonol biosynthesis. Interestingly, Fe3O4 and ZnO NPs restored 50% and 47% in the roots, while they restored 70% and 63% in the leaves to normal levels, thereby facilitating plant growth. Correlation analysis further indicated that these metabolites, including proline, 6-hydroxynicotinic acid, farrerol and quercetin-3-O-sophoroside, were significantly correlated with plant growth. CONCLUSIONS These results collectively indicate that metal nanoparticles can serve as plant growth regulators and provide insights into using them for improving crops in heavy metal-contaminated areas.
Collapse
Affiliation(s)
- Congming Zou
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, Yunnan, China
| | - Tianquan Lu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruting Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Peng Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Yifen Jing
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Jinpeng Wan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
- Center of Economic Botany, Chinese Academy of Sciences, Menglun, Mengla, 666303, Yunnan, China.
| |
Collapse
|
11
|
Zhao S, Cheng H, Xu P, Wang Y. Regulation of biosynthesis of the main flavor-contributing metabolites in tea plant ( Camellia sinensis): A review. Crit Rev Food Sci Nutr 2022; 63:10520-10535. [PMID: 35608014 DOI: 10.1080/10408398.2022.2078787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In the process of adapting to the environment, tea plants (Camellia sinensis) endow tea with unique flavor and health functions, which should be attributed to secondary metabolites, including catechins, L-theanine, caffeine and terpene volatiles. Since the content of these flavor-contributing metabolites are mainly determined by the growth of tea plant, it is very important to understand their alteration and regulation mechanisms. In the present work, we first summarize the distribution, change characteristics of the main flavor-contributing metabolites in different cultivars, organs and under environmental stresses of tea plant. Subsequently, we discuss the regulating mechanisms involved in the biosynthesis of these metabolites based on the existing evidence. Finally, we propose the remarks and perspectives on the future study relating flavor-contributing metabolites. This review would contribute to the acceleration of research on the characteristic secondary metabolites and the breeding programs in tea plants.
Collapse
Affiliation(s)
- Shiqi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Haiyan Cheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Ping Xu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yuefei Wang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Lin S, Chen Z, Chen T, Deng W, Wan X, Zhang Z. Theanine metabolism and transport in tea plants ( Camellia sinensis L.): advances and perspectives. Crit Rev Biotechnol 2022; 43:327-341. [PMID: 35430936 DOI: 10.1080/07388551.2022.2036692] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Theanine, a tea plant-specific non-proteinogenic amino acid, is the most abundant free amino acid in tea leaves. It is also one of the most important quality components of tea because it endows the "umami" taste, relaxation-promoting, and many other health benefits of tea infusion. Its content in tea leaves is directly correlated with the quality and price of green tea. Theanine biosynthesis primarily occurs in roots and is transported to new shoots in tea plants. Recently, great advances have been made in theanine metabolism and transport in tea plants. Along with the deciphering of the genomic sequences of tea plants, new genes in theanine metabolic pathway were discovered and functionally characterized. Theanine transporters were identified and were characterized on the affinity for: theanine, substrate specificity, spatiotemporal expression, and the role in theanine root-to-shoot transport. The mechanisms underlying the regulation of theanine accumulation by: cultivars, seasons, nutrients, and environmental factors are also being rapidly uncovered. Transcription factors were identified to be critical regulators of theanine biosynthesis. In this review, we summarize the progresses in theanine: biosynthesis, catabolism, and transport processes. We also discuss the future studies on theanine in tea plants, and application of the knowledge to crops to synthesize theanine to improve the health-promoting quality of non-tea crops.
Collapse
Affiliation(s)
- Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Weiwei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, PR China
| |
Collapse
|