1
|
Ali S, Tahir S, Hassan SS, Lu M, Wang X, Quyen LTQ, Zhang W, Chen S. The Role of Phytohormones in Mediating Drought Stress Responses in Populus Species. Int J Mol Sci 2025; 26:3884. [PMID: 40332819 PMCID: PMC12027658 DOI: 10.3390/ijms26083884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Drought stress substantially impacts the development and viability of Populus spp., which are essential for forestry and bioenergy production. This review summarizes and describes the functions of phytohormones, such as abscisic acid, auxins, and ethylene, in modulating physiological and molecular responses to water scarcity. Drought-induced ABA-mediated stomatal closure and root extension are essential adaptation processes. Furthermore, auxin-ABA (abscisic acid) interactions augment root flexibility, whereas ethylene regulates antioxidant defenses to alleviate oxidative stress. The advantageous function of endophytic bacteria, specifically plant growth-promoting rhizobacteria (PGPR), can augment drought resistance in spruce trees by enhancing nutrient absorption and stimulating root development. Structural adaptations encompass modifications in root architecture, including enhanced root length and density, which augment water uptake efficiency. Similarly, Arbuscular Mycorrhizal Fungi (AMF) significantly enhance stress resilience in forest trees. AMF establishes symbiotic relationships with plant roots, improving water and nutrient uptake, particularly phosphorus, during drought conditions. Furthermore, morphological alterations at the root-soil interface enhance interaction with soil moisture reserves. This review examines the complex mechanisms by which these hormones influence plant responses to water shortage, aiming to offer insights into prospective techniques for improving drought tolerance in common tree species and highlights the importance of hormone control in influencing the adaptive responses of prominent trees to drought stress, providing significant implications for research and practical applications in sustainable forestry and agriculture. These findings lay the groundwork for improving drought tolerance in Populus spp. by biotechnological means and by illuminating the complex hormonal networks that confer drought resistance.
Collapse
Affiliation(s)
- Sajid Ali
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Sana Tahir
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Syed Shaheer Hassan
- Heilongjiang Province Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin 150040, China;
| | - Meiqi Lu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Xinyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Lai Thi Quynh Quyen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| | - Wenbo Zhang
- International Center for Bamboo and Rattan, No. 8, Futong Eastern Avenue, Wangjing Area, Chaoyang District, Beijing 100102, China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Hexing Road, Harbin 150040, China; (S.A.); (S.T.); (X.W.)
| |
Collapse
|
2
|
Zhang J, Hao Z, Ruan X, Weng Y, Chen X, Zhu J, Lu L, Lu Y, Ma Y, Chen J, Shi J. Role of BABY BOOM Transcription Factor in Promoting Somatic Embryogenesis and Genetic Transformation in a Woody Magnoliid Liriodendron. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40110942 DOI: 10.1111/pce.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Somatic embryogenesis (SE) is a powerful biotechnological tool widely utilized for large-scale propagation and genetic transformation. Morphogenic genes like BABY BOOM (BBM) and WUSCHEL (WUS) play crucial roles in SE and are extensively applied to improve SE-based genetic transformation. However, the transcriptome profiling and key regulatory factors of SE in the woody magnoliid Liriodendron hybrid remain unclear. Here, we depicted the time-series transcriptome profiling of SE in Liriodendron hybrid, highlighting the temporal significance of morphogenic genes like BBM in embryogenic callus and developing somatic embryos. Expression patterns were validated using qRT-PCR and transgenic lines expressing β-glucuronidase (GUS) and red fluorescent protein mCherry driven by the LhBBM promoter. Overexpression of LhBBM, both constitutive (CaMV 35S promoter) and SE-specific (Liriodendron WOX9 promoter), enhanced SE and embryonic callus induction. Conversely, CRISPR/Cas9-mediated knockout of LhBBM reduces SE efficiency without compromising callus induction. Furthermore, we developed a secondary callus induction method that minimized the heterogeneity of a transgenic callus line, confirming the sufficiency and necessity of LhBBM in SE. Notably, LhBBM significantly improved genetic transformation efficiency in Liriodendron. These findings establish LhBBM as a promising target for enhancing SE capacity and SE-based transformation efficiency, particularly in forest trees.
Collapse
Affiliation(s)
- Jiaji Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Xiaoxiao Ruan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Yuhao Weng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Xinyin Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Junjie Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Lu Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Ye Lu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Yingxuan Ma
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
McFarland FL, Kaeppler HF. History and current status of embryogenic culture-based tissue culture, transformation and gene editing of maize (Zea mays L.). THE PLANT GENOME 2025; 18:e20451. [PMID: 38600860 PMCID: PMC11733668 DOI: 10.1002/tpg2.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
The production of embryogenic callus and somatic embryos is integral to the genetic improvement of crops via genetic transformation and gene editing. Regenerable embryogenic cultures also form the backbone of many micro-propagation processes for crop species. In many species, including maize, the ability to produce embryogenic cultures is highly genotype dependent. While some modern transformation and genome editing methods reduce genotype dependence, these efforts ultimately fall short of producing truly genotype-independent tissue culture methods. Recalcitrant genotypes are still identified in these genotype-flexible processes, and their presence is magnified by the stark contrast with more amenable lines, which may respond more efficiently by orders of magnitude. This review aims to describe the history of research into somatic embryogenesis, embryogenic tissue cultures, and plant transformation, with particular attention paid to maize. Contemporary research into genotype-flexible morphogenic gene-based transformation and genome engineering is also covered in this review. The rapid evolution of plant biotechnology from nascent technologies in the latter half of the 20th century to well-established, work-horse production processes has, and will continue to, fundamentally changed agriculture and plant genetics research.
Collapse
Affiliation(s)
- Frank L. McFarland
- Department of Plant and Agroecosystem SciencesUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWisconsinUSA
| | - Heidi F. Kaeppler
- Department of Plant and Agroecosystem SciencesUniversity of WisconsinMadisonWisconsinUSA
- Wisconsin Crop Innovation CenterUniversity of WisconsinMiddletonWisconsinUSA
| |
Collapse
|
4
|
Brant E, Zuniga‐Soto E, Altpeter F. RNAi and genome editing of sugarcane: Progress and prospects. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70048. [PMID: 40051334 PMCID: PMC11886501 DOI: 10.1111/tpj.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 03/09/2025]
Abstract
Sugarcane, which provides 80% of global table sugar and 40% of biofuel, presents unique breeding challenges due to its highly polyploid, heterozygous, and frequently aneuploid genome. Significant progress has been made in developing genetic resources, including the recently completed reference genome of the sugarcane cultivar R570 and pan-genomic resources from sorghum, a closely related diploid species. Biotechnological approaches including RNA interference (RNAi), overexpression of transgenes, and gene editing technologies offer promising avenues for accelerating sugarcane improvement. These methods have successfully targeted genes involved in important traits such as sucrose accumulation, lignin biosynthesis, biomass oil accumulation, and stress response. One of the main transformation methods-biolistic gene transfer or Agrobacterium-mediated transformation-coupled with efficient tissue culture protocols, is typically used for implementing these biotechnology approaches. Emerging technologies show promise for overcoming current limitations. The use of morphogenic genes can help address genotype constraints and improve transformation efficiency. Tissue culture-free technologies, such as spray-induced gene silencing, virus-induced gene silencing, or virus-induced gene editing, offer potential for accelerating functional genomics studies. Additionally, novel approaches including base and prime editing, orthogonal synthetic transcription factors, and synthetic directed evolution present opportunities for enhancing sugarcane traits. These advances collectively aim to improve sugarcane's efficiency as a crop for both sugar and biofuel production. This review aims to discuss the progress made in sugarcane methodologies, with a focus on RNAi and gene editing approaches, how RNAi can be used to inform functional gene targets, and future improvements and applications.
Collapse
Affiliation(s)
- Eleanor Brant
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Evelyn Zuniga‐Soto
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| | - Fredy Altpeter
- Agronomy Department, Plant Molecular and Cellular Biology Program, Genetics InstituteUniversity of Florida, IFASGainesvilleFloridaUSA
| |
Collapse
|
5
|
Aboofazeli N, Khosravi S, Bagheri H, Chandler SF, Pan SQ, Azadi P. Conquering Limitations: Exploring the Factors that Drive Successful Agrobacterium-Mediated Genetic Transformation of Recalcitrant Plant Species. Mol Biotechnol 2024:10.1007/s12033-024-01247-x. [PMID: 39177863 DOI: 10.1007/s12033-024-01247-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Agrobacterium-mediated transformation is a preferred method for genetic engineering and genome editing of plants due to its numerous advantages, although not all species exhibit transformability. Genetic engineering and plant genome editing methods are technically challenging in recalcitrant crop plants. Factors affecting the poor rate of transformation in such species include host genotype, Agrobacterium genotype, type of explant, physiological condition of the explant, vector, selectable marker, inoculation method, chemical additives, antioxidative compounds, transformation-enhancing compounds, medium formulation, optimization of culture conditions, and pre-treatments. This review provides novel insights into the key factors involved in gene transfer facilitated by Agrobacterium and proposes potential solutions to overcome existing barriers to transformation in recalcitrant species, thereby contributing to improvement programs for these species. This review introduces the key factors that impact the effectiveness of a molecular breeding program using Agrobacterium-mediated transformation, specifically focusing on recalcitrant plant species.
Collapse
Affiliation(s)
- Nafiseh Aboofazeli
- Novin Giti Gene Biotech R&D Center (N.G.G), Imam Khomeini Higher Education Center, Karaj, Iran
| | - Solmaz Khosravi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran
| | - Hedayat Bagheri
- Department of Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, 65174, Iran
| | | | - Shen Q Pan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Pejman Azadi
- Department of Genetic Engineering, Agricultural Research, Education and Extension Organization (AREEO), Agricultural Biotechnology Research Institute of Iran (ABRII), Postal Code: 3135933152, Karaj, Iran.
| |
Collapse
|
6
|
Wittmer J, Heidstra R. Appreciating animal induced pluripotent stem cells to shape plant cell reprogramming strategies. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4373-4393. [PMID: 38869461 PMCID: PMC11263491 DOI: 10.1093/jxb/erae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Animals and plants have developed resilience mechanisms to effectively endure and overcome physical damage and environmental challenges throughout their life span. To sustain their vitality, both animals and plants employ mechanisms to replenish damaged cells, either directly, involving the activity of adult stem cells, or indirectly, via dedifferentiation of somatic cells that are induced to revert to a stem cell state and subsequently redifferentiate. Stem cell research has been a rapidly advancing field in animal studies for many years, driven by its promising potential in human therapeutics, including tissue regeneration and drug development. A major breakthrough was the discovery of induced pluripotent stem cells (iPSCs), which are reprogrammed from somatic cells by expressing a limited set of transcription factors. This discovery enabled the generation of an unlimited supply of cells that can be differentiated into specific cell types and tissues. Equally, a keen interest in the connection between plant stem cells and regeneration has been developed in the last decade, driven by the demand to enhance plant traits such as yield, resistance to pathogens, and the opportunities provided by CRISPR/Cas-mediated gene editing. Here we discuss how knowledge of stem cell biology benefits regeneration technology, and we speculate on the creation of a universal genotype-independent iPSC system for plants to overcome regenerative recalcitrance.
Collapse
Affiliation(s)
- Jana Wittmer
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cell and Developmental Biology, cluster Plant Developmental Biology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
7
|
Chen F, Zeng Y, Cheng Q, Xiao L, Ji J, Hou X, Huang Q, Lei Z. Tissue culture and Agrobacterium-mediated genetic transformation of the oil crop sunflower. PLoS One 2024; 19:e0298299. [PMID: 38722945 PMCID: PMC11081250 DOI: 10.1371/journal.pone.0298299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.
Collapse
Affiliation(s)
- Fangyuan Chen
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
- Key Laboratory of Microbial Resources Protection, Development and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, XinJiang, China
| | - Youling Zeng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Quan Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Lvting Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Jieyun Ji
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, XinJiang, China
| | - Xianfei Hou
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, XinJiang, China
| |
Collapse
|
8
|
Zhang M, Ma X, Jin G, Han D, Xue J, Du Y, Chen X, Yang F, Zhao C, Zhang X. A Modified Method for Transient Transformation via Pollen Magnetofection in Lilium Germplasm. Int J Mol Sci 2023; 24:15304. [PMID: 37894985 PMCID: PMC10607007 DOI: 10.3390/ijms242015304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/27/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Lily (Lilium spp.) is a popular ornamental plant. Traditional genetic transformation methods have low efficiency in lily, thus development of a high-efficiency genetic transformation system is important. In this study, a novel transient transformation method involving pollen magnetofection was established and optimized pollen viability, and exogenous gene expression in magnetofected pollen and that of different germplasm were assessed. The highest germination percentage of Lilium regale pollen was 85.73% in medium containing 100 g/L sucrose, 61.5 mg/L H3BO3, and 91.5 mg/L CaCl2. A 1:4 ratio of nanomagnetic beads to DNA plasmid and transformation time of 0.5 h realized the highest transformation efficiency (88.32%). The GFP activity in transformed pollen averaged 69.66%, while that of the control pollen was 0.00%. In contrast to the control, transgenic seedlings obtained by pollination with magnetofected pollen showed strong positive GUS activity with 56.34% transformation efficiency. Among the lily germplasm tested, 'Sweet Surrender' and L. leucanthum had the highest transformation efficiency (85.80% and 54.47%), whereas L. davidii var. willmottiae was not successfully transformed. Transformation efficiency was positively correlated with pollen equatorial diameter and negatively correlated with polar axis/equatorial diameter ratio. The results suggest that pollen magnetofection-mediated transformation can be applied in Lilium but might have species or cultivar specificity.
Collapse
Affiliation(s)
- Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xu Ma
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Ge Jin
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Dongyang Han
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Jing Xue
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Yunpeng Du
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Xuqing Chen
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Fengping Yang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing 100097, China
| |
Collapse
|
9
|
May D, Sanchez S, Gilby J, Altpeter F. Multi-allelic gene editing in an apomictic, tetraploid turf and forage grass ( Paspalum notatum Flüggé) using CRISPR/Cas9. FRONTIERS IN PLANT SCIENCE 2023; 14:1225775. [PMID: 37521929 PMCID: PMC10373592 DOI: 10.3389/fpls.2023.1225775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023]
Abstract
Polyploidy is common among grasses (Poaceae) and poses challenges for conventional breeding. Genome editing technology circumvents crossing and selfing, enabling targeted modifications to multiple gene copies in a single generation while maintaining the heterozygous context of many polyploid genomes. Bahiagrass (Paspalum notatum Flüggé; 2n=4x=40) is an apomictic, tetraploid C4 species that is widely grown in the southeastern United States as forage in beef cattle production and utility turf. The chlorophyll biosynthesis gene magnesium chelatase (MgCh) was selected as a rapid readout target for establishing genome editing in tetraploid bahiagrass. Vectors containing sgRNAs, Cas9 and nptII were delivered to callus cultures by biolistics. Edited plants were characterized through PCR-based assays and DNA sequencing, and mutagenesis frequencies as high as 99% of Illumina reads were observed. Sequencing of wild type (WT) bahiagrass revealed a high level of sequence variation in MgCh likely due to the presence of at least two copies with possibly eight different alleles, including pseudogenes. MgCh mutants exhibited visible chlorophyll depletion with up to 82% reductions in leaf greenness. Two lines displayed progression of editing over time which was linked to somatic editing. Apomictic progeny of a chimeric MgCh editing event were obtained and allowed identification of uniformly edited progeny plants among a range of chlorophyll depletion phenotypes. Sanger sequencing of a highly edited mutant revealed elevated frequency of a WT allele, probably due to frequent homology-directed repair (HDR). To our knowledge these experiments comprise the first report of genome editing applied in perennial, warm-season turf or forage grasses. This technology will accelerate bahiagrass cultivar development.
Collapse
Affiliation(s)
- David May
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Sara Sanchez
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Jennifer Gilby
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Fredy Altpeter
- Agronomy Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
- Plant Cellular and Molecular Biology Program, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
10
|
Su W, Xu M, Radani Y, Yang L. Technological Development and Application of Plant Genetic Transformation. Int J Mol Sci 2023; 24:10646. [PMID: 37445824 DOI: 10.3390/ijms241310646] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Genetic transformation is an important strategy for enhancing plant biomass or resistance in response to adverse environments and population growth by imparting desirable genetic characteristics. Research on plant genetic transformation technology can promote the functional analysis of plant genes, the utilization of excellent traits, and precise breeding. Various technologies of genetic transformation have been continuously discovered and developed for convenient manipulation and high efficiency, mainly involving the delivery of exogenous genes and regeneration of transformed plants. Here, currently developed genetic transformation technologies were expounded and compared. Agrobacterium-mediated gene delivery methods are commonly used as direct genetic transformation, as well as external force-mediated ways such as particle bombardment, electroporation, silicon carbide whiskers, and pollen tubes as indirect ones. The regeneration of transformed plants usually involves the de novo organogenesis or somatic embryogenesis pathway of the explants. Ectopic expression of morphogenetic transcription factors (Bbm, Wus2, and GRF-GIF) can significantly improve plant regeneration efficiency and enable the transformation of some hard-to-transform plant genotypes. Meanwhile, some limitations in these gene transfer methods were compared including genotype dependence, low transformation efficiency, and plant tissue damage, and recently developed flexible approaches for plant genotype transformation are discussed regarding how gene delivery and regeneration strategies can be optimized to overcome species and genotype dependence. This review summarizes the principles of various techniques for plant genetic transformation and discusses their application scope and limiting factors, which can provide a reference for plant transgenic breeding.
Collapse
Affiliation(s)
- Wenbin Su
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yasmina Radani
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Liming Yang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Wang N, Ryan L, Sardesai N, Wu E, Lenderts B, Lowe K, Che P, Anand A, Worden A, van Dyk D, Barone P, Svitashev S, Jones T, Gordon-Kamm W. Leaf transformation for efficient random integration and targeted genome modification in maize and sorghum. NATURE PLANTS 2023; 9:255-270. [PMID: 36759580 PMCID: PMC9946824 DOI: 10.1038/s41477-022-01338-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 05/28/2023]
Abstract
Transformation in grass species has traditionally relied on immature embryos and has therefore been limited to a few major Poaceae crops. Other transformation explants, including leaf tissue, have been explored but with low success rates, which is one of the major factors hindering the broad application of genome editing for crop improvement. Recently, leaf transformation using morphogenic genes Wuschel2 (Wus2) and Babyboom (Bbm) has been successfully used for Cas9-mediated mutagenesis, but complex genome editing applications, requiring large numbers of regenerated plants to be screened, remain elusive. Here we demonstrate that enhanced Wus2/Bbm expression substantially improves leaf transformation in maize and sorghum, allowing the recovery of plants with Cas9-mediated gene dropouts and targeted gene insertion. Moreover, using a maize-optimized Wus2/Bbm construct, embryogenic callus and regenerated plantlets were successfully produced in eight species spanning four grass subfamilies, suggesting that this may lead to a universal family-wide method for transformation and genome editing across the Poaceae.
Collapse
Affiliation(s)
- Ning Wang
- Corteva Agriscience, Johnston, IA, USA
| | | | | | - Emily Wu
- Corteva Agriscience, Johnston, IA, USA
| | | | | | - Ping Che
- Corteva Agriscience, Johnston, IA, USA
| | - Ajith Anand
- Corteva Agriscience, Johnston, IA, USA
- MyFloraDNA, Woodland, CA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Tiedge K, Destremps J, Solano-Sanchez J, Arce-Rodriguez ML, Zerbe P. Foxtail mosaic virus-induced gene silencing (VIGS) in switchgrass (Panicum virgatum L.). PLANT METHODS 2022; 18:71. [PMID: 35644680 PMCID: PMC9150325 DOI: 10.1186/s13007-022-00903-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/07/2022] [Indexed: 05/08/2023]
Abstract
BACKGROUND Although the genome for the allotetraploid bioenergy crop switchgrass (Panicum virgatum) has been established, limitations in mutant resources have hampered in planta gene function studies toward crop optimization. Virus-induced gene silencing (VIGS) is a versatile technique for transient genetic studies. Here we report the implementation of foxtail mosaic virus (FoMV)-mediated gene silencing in switchgrass in above- and below-ground tissues and at different developmental stages. RESULTS The study demonstrated that leaf rub-inoculation is a suitable method for systemic gene silencing in switchgrass. For all three visual marker genes, Magnesium chelatase subunit D (ChlD) and I (ChlI) as well as phytoene desaturase (PDS), phenotypic changes were observed in leaves, albeit at different intensities. Gene silencing efficiency was verified by RT-PCR for all tested genes. Notably, systemic gene silencing was also observed in roots, although silencing efficiency was stronger in leaves (~ 63-94%) as compared to roots (~ 48-78%). Plants at a later developmental stage were moderately less amenable to VIGS than younger plants, but also less perturbed by the viral infection. CONCLUSIONS Using FoMV-mediated VIGS could be achieved in switchgrass leaves and roots, providing an alternative approach for studying gene functions and physiological traits in this important bioenergy crop.
Collapse
Affiliation(s)
- Kira Tiedge
- Department of Plant Biology, University of California, Davis, USA.
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | | | | | | | - Philipp Zerbe
- Department of Plant Biology, University of California, Davis, USA
| |
Collapse
|