1
|
Song X, Zhu Y, Bao Y. Identification and characteristics of differentially expressed genes under UV-B stress in Gossypium hirsutum. FRONTIERS IN PLANT SCIENCE 2025; 15:1529912. [PMID: 39881734 PMCID: PMC11774880 DOI: 10.3389/fpls.2024.1529912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025]
Abstract
Objective This study aimed to screen the differentially expressed genes (DEGs) of Gossypium hirsutum under UV-B stress and identify the significant pathways based on gene enrichment analysis results. Methods In this study, the allotetraploid crop G. hirsutum was used to examine changes in various physiological indexes under UV-B stress, and screened out all DEGs under UV-B stress (16 kJ m-2 d-1) based on six leaf transcriptomes. The main enrichment pathways of DEGs were analyzed according to gene annotation. Finally, we predicted the regulatory genes of phenylpropanoid pathway under UV-B stress by co-expression network analysis, and selected GhMYB4 for verification. Results Gene annotation analysis revealed that DEGs were predominantly enriched in pathways related to photosynthesis and secondary metabolism. Further analysis revealed that UV-B stress impaired photosynthesis mainly by damaging photosystem II (PSII) and inhibiting electron transport, whereas G. hirsutum responded to UV-B stress by synthesizing secondary metabolites such as anthocyanins and lignin. We selected the regulatory genes GhMYB4 for verification. It was found to be an anthocyanin negative regulator in response to UV-B stress. Conclusions UV-B stress impaired photosynthesis mainly by damaging photosystem II (PSII) and inhibiting electron transport, whereas G. hirsutum responded to UV-B stress by synthesizing secondary metabolites such as anthocyanins and lignin.
Collapse
Affiliation(s)
| | | | - Ying Bao
- School of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
2
|
Yu W, Zhou X, Meng J, Zhou X, Xu H. Multi-Omics Research Reveals the Effects of the ABA-Regulated Phenylpropanoid Biosynthesis Pathway on the UV-B Response in Rhododendron chrysanthum Pall. PLANTS (BASEL, SWITZERLAND) 2025; 14:101. [PMID: 39795361 PMCID: PMC11723134 DOI: 10.3390/plants14010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025]
Abstract
The growing depletion of the ozone layer has led to increased ultraviolet B (UV-B) radiation, prompting plants like the alpine Rhododendron chrysanthum Pall. (R. chrysanthum) to adapt to these harsh conditions. This study explored how abscisic acid (ABA) signaling influences R. chrysanthum's metabolic responses under UV-B stress. R. chrysanthum was treated with UV-B radiation and exogenous ABA for widely targeted metabolomics, transcriptomics, and proteomics assays, and relevant chlorophyll fluorescence parameters were also determined. It was observed that UV-B stress negatively impacts the plant's photosynthetic machinery, disrupting multiple metabolic processes. Multi-omics analysis revealed that ABA application mitigates the detrimental effects of UV-B on photosynthesis and bolsters the plant's antioxidant defenses. Additionally, both UV-B exposure and ABA treatment significantly influenced the phenylpropanoid biosynthesis pathway, activating key enzyme genes, such as 4CL, CCR, and HCT. The study also highlighted the MYB-bHLH-WD40 (MBW) complex's role in regulating this pathway and its interaction with ABA signaling components. These findings underscore ABA's crucial function in improving plant resistance to UV-B stress and offer novel insights into plant stress biology.
Collapse
Affiliation(s)
| | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (W.Y.); (X.Z.)
| | - Hongwei Xu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China; (W.Y.); (X.Z.)
| |
Collapse
|
3
|
Li L, Jiang G, Li H, Liu J, Zhang P, Wang Q, Huang L, Zhang S, Wang X, Zhang L, Bai Y, Qin P. UV-B induced flavonoid accumulation and related gene expression in blue- grained wheat at different periods of time. FRONTIERS IN PLANT SCIENCE 2024; 15:1520543. [PMID: 39737375 PMCID: PMC11684391 DOI: 10.3389/fpls.2024.1520543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025]
Abstract
Introduction UV-B can be used as an additional technique for nutrient accumulation in blue-grained wheat, which has special nutritional properties due to its blue starch layer. The concentration of flavonoids in blue-grained wheat under UV-B irradiation is extremely important for further investigation and exploitation of the nutritional properties of blue-grained wheat. Methods This investigation focuses on the expression of flavonoids and associated genes in blue-grained wheat using transcriptomic and metabolomic analyzes. Results The metabolome revealed 1846 compounds and 340 flavonoids after UV-B irradiation. Under UV-B irradiation, the amount of flavonoid metabolites decreased over time, but flavones and flavanols increased, and flavones and flavanols were more diverse and abundant. The content of some flavonoids of blue-grain wheat in period 2 was significantly higher under UV-B irradiation than its check and other periods of different treatments. There are 42344 differentially expressed genes identified from transcriptomic analysis, including 151 genes associated with the flavonoid pathway. The genes for the enzymes FLS, ANR, HCT, CYP75A and CYP73A are more abundant, with F3H and FLS showing higher expression levels. Discussion The expression of these genes decreased after early UV-B irradiation, but increased later. In the joint WGCNA study of the two groups, the FLS enzyme gene LOC123125079 plays an important role in the response of blue-grained wheat to UV-B irradiation. Our findings help to identify essential genes and processes that allow blue-grained wheat to respond appropriately to UV-B irradiation, which is critical for the accumulation of flavonoids and other bioactive compounds in colored wheat, maximising its nutritional properties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Geng D, Sun Y, Liu S, Chen W, Gao F, Bai Y, Zhang S. Study on Synthesis and Regulation of PPVI and PPVII in Paris polyphylla with UV. Metabolites 2024; 14:427. [PMID: 39195523 DOI: 10.3390/metabo14080427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/18/2024] [Accepted: 07/28/2024] [Indexed: 08/29/2024] Open
Abstract
Paris polyphylla Smith var. Chinensis (Franch.) Hara is a medicinal plant that belongs to the Liliaceae family. Its main components are parissaponins, which have excellent medicinal effects such as anti-inflammatory, anti-tumor, etc. Improving the quality of parissaponins through artificial directional regulation has emerged as a practice to meet medical demand and is a new research hotspot. In this paper, P. polyphylla plants were treated with UVA, UVB, and UVC, and the contents of PolyPhyllin VI (PPVI) and PolyPhyllin VII (PPVII), saponin synthase (squalene synthase, SS; cycloartenol synthase, CAS; cytochrome P450, CYP450; and glycosyl transferases, GT) activity, MDA, and the photosynthetic pigment indexes were measured and analyzed. The results showed that PPVII content increased by 32.43% with UVC treatment after 4 h (3.43 mg/g), but the PPVI and PPVII contents in the other groups decreased compared with CK (control group) and they did not return to the original level after 4 h. SS, CAS, CYP450, and GT synthases were activated in varying degrees via UV treatment and increased, respectively, by 22.93%, 10.83%, 20.15%, and 25.98%. Among them, GT, as the last of the synthetases, had a shorter response time to UVB (30 min) and UVC (15 min); the difference was sensible compared with CK. Moreover, UV had a stressing effect and promoted the rapid accumulation of MDA content (increased 17.66%, 34.53%, and 9.65%) and carotenoid (increased 7.58, 5.60, and 7.76 times) within 4 h compared to CK. UVB and UVC radiation visibly improved chlorophyll a content (42.56% and 35.45%), but UVA did not, and the change in chlorophyll b content showed no overt statistical difference. In addition, PPVI and PPVII were negatively correlated with SS, CAS, carotenoids, and MDA (p < 0.05) and positively correlated with CYP450, GT, and chlorophyll a (p < 0.05). This study provides a theoretical basis for using UV light to regulate secondary metabolism in P. polyphylla, which is of great value for production management.
Collapse
Affiliation(s)
- Dongjie Geng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yiqun Sun
- Chun'an County Forestry Bureau, Chun'an 311330, China
| | - Shouzan Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Wen Chen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Fei Gao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Yan Bai
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Hangzhou 311300, China
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Shaobo Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311300, China
| |
Collapse
|
5
|
Elsherif DE, Safhi FA, Subudhi PK, Shaban AS, El-Esawy MA, Khalifa AM. Phytochemical Profiling and Bioactive Potential of Grape Seed Extract in Enhancing Salinity Tolerance of Vicia faba. PLANTS (BASEL, SWITZERLAND) 2024; 13:1596. [PMID: 38931028 PMCID: PMC11207552 DOI: 10.3390/plants13121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Salinity stress poses a significant threat to crop productivity worldwide, necessitating effective mitigation strategies. This study investigated the phytochemical composition and potential of grape seed extract (GSE) to mitigate salinity stress effects on faba bean plants. GC-MS analysis revealed several bioactive components in GSE, predominantly fatty acids. GSE was rich in essential nutrients and possessed a high antioxidant capacity. After 14 days of germination, GSE was applied as a foliar spray at different concentrations (0, 2, 4, 6, and 8 g/L) to mitigate the negative effects of salt stress (150 mM NaCl) on faba bean plants. Foliar application of 2-8 g/L GSE significantly enhanced growth parameters such as shoot length, root length, fresh weight, and dry weight of salt-stressed bean plants compared to the control. The Fv/Fm ratio, indicating photosynthetic activity, also improved with GSE treatment under salinity stress compared to the control. GSE effectively alleviated the oxidative stress induced by salinity, reducing malondialdehyde, hydrogen peroxide, praline, and glycine betaine levels. Total soluble proteins, amino acids, and sugars were enhanced in GSE-treated, salt-stressed plants. GSE treatment under salinity stress modulated the total antioxidant capacity, antioxidant responses, and enzyme activities such as peroxidase, ascorbate peroxidase, and polyphenol oxidase compared to salt-stressed plants. Gene expression analysis revealed GSE (6 g/L) upregulated photosynthesis (chlorophyll a/b-binding protein of LHCII type 1-like (Lhcb1) and ribulose bisphosphate carboxylase large chain-like (RbcL)) and carbohydrate metabolism (cell wall invertase I (CWINV1) genes) while downregulating stress response genes (ornithine aminotransferase (OAT) and ethylene-responsive transcription factor 1 (ERF1)) in salt-stressed bean plants. The study demonstrates GSE's usefulness in mitigating salinity stress effects on bean plants by modulating growth, physiology, and gene expression patterns, highlighting its potential as a natural approach to enhance salt tolerance.
Collapse
Affiliation(s)
- Doaa E. Elsherif
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (D.E.E.); (M.A.E.-E.)
| | - Fatmah A. Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| | - Abdelghany S. Shaban
- Botany and Microbiology Department, Faculty of Science (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mai A. El-Esawy
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt; (D.E.E.); (M.A.E.-E.)
| | - Asmaa M. Khalifa
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University (Girls Branch), Cairo 11765, Egypt;
| |
Collapse
|
6
|
Azarin K, Usatov A, Minkina T, Duplii N, Kasyanova A, Fedorenko A, Khachumov V, Mandzhieva S, Rajput VD. Effects of bulk and nano-ZnO particles on functioning of photosynthetic apparatus in barley (Hordeum vulgare L.). ENVIRONMENTAL RESEARCH 2023; 216:114748. [PMID: 36370809 DOI: 10.1016/j.envres.2022.114748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The functioning of the photosynthetic apparatus in barley (Hordeum vulgare L.) after 7-days of exposure to bulk (b-ZnO) and nanosized ZnO (n-ZnO) (300, 2000, and 10,000 mg/l) has been investigated. An impact on the amount of chlorophylls, photosynthetic efficiency, as well as the zinc accumulation in chloroplasts was demonstrated. Violation of the chloroplast fine structure was revealed. These changes were generally more pronounced with n-ZnO exposure, especially at high concentrations. For instance, the chlorophyll deficiency under 10,000 mg/l b-ZnO treatment was 31% and with exposure to 10,000 mg/l n-ZnO, the chlorophyll deficiency was already 52%. The expression analysis of the photosynthetic genes revealed their different sensitivity to b-ZnO and n-ZnO exposure. The genes encoding subunits of photosystem II (PSII) and, to a slightly lesser extent, photosystem I (PSI) showed the highest suppression of transcriptional levels. The mRNA levels of the subunits of cytochrome-b6f, NADH dehydrogenase, ribulose-1,5-bisphosphate carboxylase and ATP synthase, which, in addition to linear electron flow (LEF), participate in cyclic electron flow (CEF) and autotrophic CO2 fixation, were more stable or increased under b-ZnO and n-ZnO treatments. At the same time, CEF was increased. It was assumed that under the action of b-ZnO and n-ZnO, the processes of LEF are disrupted, and CEF is activated. This allows the plant to prevent photo-oxidation and compensate for the lack of ATP for the CO2 fixation process, thereby ensuring the stability of photosynthetic function in the initial stages of stress factor exposure. The study of photosynthetic structures of crops is important from the point of view of understanding the risks of reducing the production potential and the level of food security due to the growing use of nanoparticles in agriculture.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Alexander Usatov
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Tatiana Minkina
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | - Nadezhda Duplii
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | | | - Aleksei Fedorenko
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation
| | | | | | - Vishnu D Rajput
- Southern Federal University, Rostov-on-Don, 344090, Russian Federation.
| |
Collapse
|
7
|
Chen YY, Lu HQ, Jiang KX, Wang YR, Wang YP, Jiang JJ. The Flavonoid Biosynthesis and Regulation in Brassica napus: A Review. Int J Mol Sci 2022; 24:ijms24010357. [PMID: 36613800 PMCID: PMC9820570 DOI: 10.3390/ijms24010357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Brassica napus is an important crop for edible oil, vegetables, biofuel, and animal food. It is also an ornamental crop for its various petal colors. Flavonoids are a group of secondary metabolites with antioxidant activities and medicinal values, and are important to plant pigmentation, disease resistance, and abiotic stress responses. The yellow seed coat, purple leaf and inflorescence, and colorful petals of B. napus have been bred for improved nutritional value, tourism and city ornamentation. The putative loci and genes regulating flavonoid biosynthesis in B. napus have been identified using germplasms with various seed, petal, leaf, and stem colors, or different flavonoid contents under stress conditions. This review introduces the advances of flavonoid profiling, biosynthesis, and regulation during development and stress responses of B. napus, and hopes to help with the breeding of B. napus with better quality, ornamental value, and stress resistances.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Qin Lu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Kai-Xuan Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yi-Ran Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jin-Jin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
8
|
UV Radiation Induces Specific Changes in the Carotenoid Profile of Arabidopsis thaliana. Biomolecules 2022; 12:biom12121879. [PMID: 36551307 PMCID: PMC9775031 DOI: 10.3390/biom12121879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
UV-B and UV-A radiation are natural components of solar radiation that can cause plant stress, as well as induce a range of acclimatory responses mediated by photoreceptors. UV-mediated accumulation of flavonoids and glucosinolates is well documented, but much less is known about UV effects on carotenoid content. Carotenoids are involved in a range of plant physiological processes, including photoprotection of the photosynthetic machinery. UV-induced changes in carotenoid profile were quantified in plants (Arabidopsis thaliana) exposed for up to ten days to supplemental UV radiation under growth chamber conditions. UV induces specific changes in carotenoid profile, including increases in antheraxanthin, neoxanthin, violaxanthin and lutein contents in leaves. The extent of induction was dependent on exposure duration. No individual UV-B (UVR8) or UV-A (Cryptochrome or Phototropin) photoreceptor was found to mediate this induction. Remarkably, UV-induced accumulation of violaxanthin could not be linked to protection of the photosynthetic machinery from UV damage, questioning the functional relevance of this UV response. Here, it is argued that plants exploit UV radiation as a proxy for other stressors. Thus, it is speculated that the function of UV-induced alterations in carotenoid profile is not UV protection, but rather protection against other environmental stressors such as high intensity visible light that will normally accompany UV radiation.
Collapse
|
9
|
Lee JH, Goto E. Ozone control as a novel method to improve health-promoting bioactive compounds in red leaf lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:1045239. [PMID: 36544872 PMCID: PMC9760822 DOI: 10.3389/fpls.2022.1045239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
In this study, we determined the short-term effects of ozone exposure on the growth and accumulation of bioactive compounds in red lettuce leaves grown in a controlled environment plant factory with artificial light, also known as a vertical farm. During cultivation, twenty-day-old lettuce (Lactuca sativa L. var. Redfire) seedlings were exposed to 100 and 200 ppb of ozone concentrations for 72 h. To find out how plants react to ozone and light, complex treatments were done with light and ozone concentrations (100 ppb; 16 h and 200 ppb; 24 h). Ozone treatment with 100 ppb did not show any significant difference in shoot fresh weight compared to that of the control, but the plants exposed to the 200 ppb treatment showed a significant reduction in fresh weight by 1.3 fold compared to the control. The expression of most genes in lettuce plants exposed to 100 and 200 ppb of ozone increased rapidly after 0.5 h and showed a decreasing trend after reaching a peak. Even when exposed to a uniform ozone concentration, the pattern of accumulating bioactive compounds such as total phenolics, antioxidant capacity and total flavonoids varied based on leaf age. At a concentration of 200 ppb, a greater accumulation was found in the third (older) leaf than in the fourth leaf (younger). The anthocyanin of lettuce plants subjected to 100 and 200 ppb concentrations increased continuously for 48 h. Our results suggest that ozone control is a novel method that can effectively increase the accumulation of bioactive compounds in lettuce in a plant factory.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Chiba, Japan
- Plant Molecular Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
10
|
Wittayathanarattana T, Wanichananan P, Supaibulwatana K, Goto E. Enhancement of bioactive compounds in baby leaf Amaranthus tricolor L. using short-term application of UV-B irradiation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:202-215. [PMID: 35525201 DOI: 10.1016/j.plaphy.2022.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/05/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Baby-leaf vegetables are a trade name for leafy vegetables sold as leaves with petioles at the seedling stage. Amaranth (Amaranthus tricolor L.) is a nutritious baby-leaf vegetable containing many bioactive compounds. The effects of short-term ultraviolet B (UV-B) treatments on the growth and quality of baby leaf amaranth were studied, including the conditions of a 24-h recovery period after irradiation, and different irradiation intensities (3.0-9.0 W m-2), irradiation periods (4-16 h), and cumulative energies (130-170 kJ m-2). A recovery period experiment was conducted to observe the changes in the growth and quality of leaves at 0 and 24 h after UV-B irradiation. The results showed that the concentrations of phenolic compounds, flavonoids, anthocyanin, and ascorbic acid in the leaves, as well as the leaf antioxidant capacity increased 24 h after UV-B irradiation. Increases in target compound concentrations and antioxidant capacity without negative growth and appearance effects were observed in leaves irradiated with UV-B at 3, 6, and 9 W m-2 for irradiation periods of 12 and 16, 8 and 12, and 4 h, respectively. The highest bioactive compound concentration was found in leaves irradiated with UV-B at 6 W m-2 for 7 h (cumulative energy: 150 kJ m-2). It was concluded that UV-B irradiation at 6 W m-2 with a cumulative energy of 150 kJ m-2 and a 24 h post-irradiation recovery period could be an appropriate treatment to increase bioactive compounds in baby leaf amaranth without causing appearance abnormalities.
Collapse
Affiliation(s)
- Takon Wittayathanarattana
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Praderm Wanichananan
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| | | | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba, 271-8510, Japan; Plant Molecular Research Center, Chiba University, Chiba, 260-0856, Japan.
| |
Collapse
|
11
|
Lee JH, Tanaka S, Goto E. Growth and Biosynthesis of Phenolic Compounds of Canola ( Brassica napus L.) to Different Ultraviolet (UV)-B Wavelengths in a Plant Factory with Artificial Light. PLANTS (BASEL, SWITZERLAND) 2022; 11:1732. [PMID: 35807684 PMCID: PMC9268760 DOI: 10.3390/plants11131732] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The application of ultraviolet-B (UV-B) irradiation to supplement visible light as an elicitor to increase bioactive compounds under controlled conditions is increasing. This study aimed to evaluate the effects of UV-B dose and wavelength region (280−300 and 300−320 nm) on the morphological, physiological, and biochemical responses of canola plants (Brassica napus L.). Canola plants (17 days after sowing) were subjected to various UV-B intensities (i.e., 0.3, 0.6, and 0.9 W m−2) and were divided into cut and non-cut treatments for each UV treatment. Plant growth parameters exhibited different trends based on the treated UV irradiation intensity. Plant growth gradually decreased as the UV irradiation intensity and exposure time increased. Despite the same UV irradiation intensity, plant response varied significantly depending on the presence or absence of a short-wavelength cut filter (<300 nm). Canola plants suffered more leaf damage in nonfilter treatments containing shorter wavelengths (280−300 nm). UV treatment effectively activates the expression of secondary metabolite biosynthetic genes, differing depending on the UV irradiation intensity. Our results suggest that both UV irradiation intensity and wavelength should be considered when enhancing antioxidant phytochemicals without inhibiting plant growth in a plant factory with artificial light.
Collapse
Affiliation(s)
- Jin-Hui Lee
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Saki Tanaka
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
| | - Eiji Goto
- Graduate School of Horticulture, Chiba University, Matsudo 648, Chiba 271-8510, Japan; (J.-H.L.); (S.T.)
- Plant Molecular Research Center, Chiba University, Chiba 260-0856, Japan
| |
Collapse
|