1
|
Wu JN, Cai CX, Liu WB, Ai D, Cao S, Wang B, Wang GR. Mutagenesis of Odorant Receptor Coreceptor Orco Reveals the Odorant-Detected Behavior of the Predator Eupeodes corollae. Int J Mol Sci 2023; 24:17284. [PMID: 38139113 PMCID: PMC10744098 DOI: 10.3390/ijms242417284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The successful mating of the hoverfly and the search for prey aphids are of great significance for biological control and are usually mediated by chemical cues. The odorant receptor co-receptor (Orco) genes play a crucial role in the process of insect odor perception. However, the function of Orco in the mating and prey-seeking behaviors of the hoverfly remains relatively unexplored. In this study, we characterized the Orco gene from the hoverfly, Eupeodes corollae, a natural enemy insect. We used the CRISPR/Cas9 technique to knock out the Orco gene of E. corollae, and the EcorOrco-/- homozygous mutant was verified by the genotype analysis. Fluorescence in situ hybridization showed that the antennal ORN of EcorOrco-/- mutant lack Orco staining. Electroantennogram (EAG) results showed that the adult mutant almost lost the electrophysiological response to 15 odorants from three types. The two-way choice assay and the glass Y-tube olfactometer indicated that both the larvae and adults of hoverflies lost their behavioral preference to the aphid alarm pheromone (E)-β-farnesene (EBF). In addition, the mating assay results showed a significant decrease in the mating rate of males following the knock out of the EcorOrco gene. Although the mating of females was not affected, the amount of eggs being laid and the hatching rate of the eggs were significantly reduced. These results indicated that the EcorOrco gene was not only involved in the detection of semiochemicals in hoverflies but also plays a pivotal role in the development of eggs. In conclusion, our results expand the comprehension of the chemoreceptive mechanisms in the hoverflies and offers valuable insights for the advancement of more sophisticated pest management strategies.
Collapse
Affiliation(s)
- Ji-Nan Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-N.W.); (C.-X.C.); (W.-B.L.); (D.A.); (S.C.)
| | - Chen-Xi Cai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-N.W.); (C.-X.C.); (W.-B.L.); (D.A.); (S.C.)
| | - Wen-Biao Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-N.W.); (C.-X.C.); (W.-B.L.); (D.A.); (S.C.)
| | - Dong Ai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-N.W.); (C.-X.C.); (W.-B.L.); (D.A.); (S.C.)
| | - Song Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-N.W.); (C.-X.C.); (W.-B.L.); (D.A.); (S.C.)
| | - Bing Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-N.W.); (C.-X.C.); (W.-B.L.); (D.A.); (S.C.)
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (J.-N.W.); (C.-X.C.); (W.-B.L.); (D.A.); (S.C.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Balbuena MS, Broadhead GT, Dahake A, Barnett E, Vergara M, Skogen KA, Jogesh T, Raguso RA. Mutualism has its limits: consequences of asymmetric interactions between a well-defended plant and its herbivorous pollinator. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210166. [PMID: 35491593 DOI: 10.1098/rstb.2021.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Concern for pollinator health often focuses on social bees and their agricultural importance at the expense of other pollinators and their ecosystem services. When pollinating herbivores use the same plants as nectar sources and larval hosts, ecological conflicts emerge for both parties, as the pollinator's services are mitigated by herbivory and its larvae are harmed by plant defences. We tracked individual-level metrics of pollinator health-growth, survivorship, fecundity-across the life cycle of a pollinating herbivore, the common hawkmoth, Hyles lineata, interacting with a rare plant, Oenothera harringtonii, that is polymorphic for the common floral volatile (R)-(-)-linalool. Linalool had no impact on floral attraction, but its experimental addition suppressed oviposition on plants lacking linalool. Plants showed robust resistance against herbivory from leaf-disc to whole-plant scales, through poor larval growth and survivorship. Higher larval performance on other Oenothera species indicates that constitutive herbivore resistance by O. harringtonii is not a genus-wide trait. Leaf volatiles differed among populations of O. harringtonii but were not induced by larval herbivory. Similarly, elagitannins and other phenolics varied among plant tissues but were not herbivore-induced. Our findings highlight asymmetric plant-pollinator interactions and the importance of third parties, including alternative larval host plants, in maintaining pollinator health. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Maria Sol Balbuena
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET, Universidad de Buenos Aires, C1428EHA, Argentina
| | - Geoffrey T Broadhead
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Ajinkya Dahake
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| | - Emily Barnett
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Melissa Vergara
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA
| | - Krissa A Skogen
- Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60035, USA
| | - Tania Jogesh
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA 95060, USA.,Negaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL 60035, USA
| | - Robert A Raguso
- Department of Neurobiology and Behaviour, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|