1
|
Wang R, Li W, He Z, Lyu H, Wang X, Ye C, Xun C, Xiao G, Zhang Y, Zhang Z, Ma Y, Chen L, Chen B, Jia G, Tian B, Chen Y. Haplotype-resolved genome assembly of the tetraploid Youcha tree Camellia meiocarpa Hu. Sci Data 2025; 12:541. [PMID: 40164616 PMCID: PMC11958635 DOI: 10.1038/s41597-025-04887-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Camellia meiocarpa Hu, a member of Youcha species in the genus Camellia, is an important woody edible Youcha plant with high ecological and economic value. The haplotype-resolved genome assembly of this tetraploid species can shed light on genomic evolution and the functional divergence among subgenomes and haplotypes. In this study, we achieved the first chromosome-level haplotype-resolved genome assembly using PacBio HiFi, Hi-C, and Illumina sequencing. The scaffolds, with an N50 of 44.46 Mb and 41.40 Mb, were mapped to 60 chromosomes and four distinct haplotypes, each with unique transposon features. The haplotypes varied in length (2967.25 Mb to 3041.66 Mb) and contained 51,336 to 52,631 protein-coding genes, 99.4% of which were annotated. Non-coding RNAs and repetitive elements were identified across haplotypes. This comprehensive genomic resource will enhance molecular and genetic studies, aiding in the conservation and utilization of Youcha.
Collapse
Affiliation(s)
- Rui Wang
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | - Weiguo Li
- HuaZhi Biotechnology Co., Ltd, Changsha, China
| | - Zhilong He
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | - Haomin Lyu
- HuaZhi Biotechnology Co., Ltd, Changsha, China
| | - Xiangnan Wang
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | | | - Chengfeng Xun
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | | | - Ying Zhang
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | - Zhen Zhang
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | - Yushen Ma
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | - Longsheng Chen
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | - Bolin Chen
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China
- National Engineering Research Center of Youcha, Changsha, China
- Yuelushan Laboratory, Changsha, China
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China
| | - Gaofeng Jia
- HuaZhi Biotechnology Co., Ltd, Changsha, China.
| | | | - Yongzhong Chen
- Research Institute of Youcha, Hunan Academy of Forestry, Changsha, China.
- National Engineering Research Center of Youcha, Changsha, China.
- Yuelushan Laboratory, Changsha, China.
- State Key Laboratory of Utilization of Woody Oil Resource, Changsha, China.
| |
Collapse
|
2
|
Fan Z, Xu X, Wang Q, Zheng W. Comparative chloroplast genomes and phylogenetic analyses shed new insights on the phyloevolution of different ploidy in Camellia reticulata. BMC PLANT BIOLOGY 2025; 25:321. [PMID: 40075277 PMCID: PMC11899558 DOI: 10.1186/s12870-025-06349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Camellia reticulata Lindl. (C. reticulata) is the tallest ornamental camellia globally, with wild populations comprising a polyploid complex of diploids (2×), tetraploids (4×), and hexaploids (6×). The type specimen of C. reticulata is a heteroploid hexaploid derived from 2 × ancestors, including C. pitardii, C. saluenensis, and 2 × C. reticulata. Currently, limited information exists regarding the evolutionary characteristics of the chloroplast genomes of C. reticulata at different ploidy levels, and the phylogenetic position of 2 × and 4 × C. reticulata remains unclear. RESULTS This study sequenced, assembled, and annotated the chloroplast genomes of 2 × and 4 × C. reticulata, comparing them with those of 6 × C. reticulata and other closely related species. The results indicated that the chloroplast genome sizes of C. reticulata ranged from 156,519 to 156,927 bp, with gene counts, distributions, GC content, and codon usage being similar across different ploidy levels. The ycf1 gene exhibited significant differentiation among species, and was identified as a candidate for adaptive evolution in C. reticulata. Additionally, 11 highly differentiated intergenic regions were identified, with six hotspots of variation that can serve as molecular markers for genetic studies in C. reticulata populations. Analysis of selection pressure indicated that four genes were under positive selection. Phylogenetic analysis revealed that the polyploid complex of C. reticulata, along with C. pitardii, C. saluenensis, and C. mairei, formed a well-supported clade. The genetic distances between 6 × C. reticulata and its three 2 × ancestors were relatively small. CONCLUSION Camellia pitardii, C. saluenensis, and C. mairei may have participated in the allopolyploidization of C. reticulata, with both 2 × and 4 × C. reticulata have the potential for independent classification. These findings provide valuable insights into chloroplast genome alterations following allopolyploidization, establishing a crucial foundation for understanding the systematic evolutionary history of various ploidy levels in C. reticulata.
Collapse
Affiliation(s)
- Zhifeng Fan
- City College, Kunming University of Science and Technology, Kunming, 650500, China
| | - Xiaodan Xu
- Laboratory of Landscape Plants, Department of Landscape Architecture, Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, 650500, China
| | - Qi Wang
- Laboratory of Landscape Plants, Department of Landscape Architecture, Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Zheng
- Laboratory of Landscape Plants, Department of Landscape Architecture, Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Ge L, Zeeshan Ul Haq M, Yao Y, Yang D, Liu Y, Yang H, Wu Y. Influence of Exogenous Melatonin on the Physiological Traits of Camellia hainanica Seedlings Under Polyethylene Glycol-Induced Drought Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:676. [PMID: 40094565 PMCID: PMC11902208 DOI: 10.3390/plants14050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/15/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025]
Abstract
This study investigated the effects of exogenous melatonin (MT) on the physiological responses of Camellia hainanica seedlings under drought stress, using the drought-tolerant variety "Hai Da 1" and the drought-sensitive variety "Wan Hai 1" as test materials. Seedlings were treated with MT at concentrations of 0, 50, 100, 150, 200, and 250 μmol/L through irrigation, followed by drought stress induced by polyethylene glycol (PEG-6000). The results revealed that MT alleviated growth damage caused by PEG-simulated drought stress, with leaf relative conductivity and malondialdehyde (MDA) content showing an initial decrease followed by an increase as MT concentration rose. In contrast, relative water content, chlorophyll content, antioxidant enzyme activity, secondary metabolite levels, and carbohydrate content initially increased and then declined with increasing MT concentration. Treatment with 200 μmol/L MT notably reduced MDA content by 40-50%, enhanced antioxidant enzyme activity by 20-30%, and increased secondary metabolite levels by 11-42% in the drought-sensitive variety. These findings identified 200 μmol/L MT as the optimal concentration for mitigating drought stress in C. hainanica seedlings, providing a foundation for its practical application in C. hainanica production and further research into the drought resistance mechanisms mediated by MT.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| |
Collapse
|
4
|
Xia T, Xiong Z, Wang C, Sun X, Chen Y, Chen J, Qi H, Liang H, Zhang L, Zheng D. Comprehensive analysis of the effects of the traditional stir-fry process on the dynamic changes of volatile metabolites in Hainan camellia oil. Food Chem X 2024; 23:101747. [PMID: 39263335 PMCID: PMC11388339 DOI: 10.1016/j.fochx.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024] Open
Abstract
The traditional stir-fry process before pressing is crucial to manufacture Hainan camellia oil. To assess the effects of the stir-fry process on Hainan camellia oil, six samples across different stir-fry stages were analyzed. The stir-fry process modified odors, volatile metabolite profiles, and human health-promoting functions of Hainan camellia oil. Totally, 350 volatile metabolites were detected, and heterocyclic compounds were revealed as the main contributors of strong aroma. Potential indicators for monitoring the stir-fry degree were established. Eight key aroma volatile metabolites were identified, including three new ones (1-octen-3-one, 2,3-butanedione, and vanillin). Lipids degradation and the Millard reaction are probably the main pathways for aroma generation. Over-stir-fry treatment diminished the contents of some important volatile metabolites but increased the risk of arising burnt odor. Our work offered insights into the effects of the stir-fry process and over-stir-fry treatment on Hainan camellia oil, which is meaningful for improving the hot-pressing technique.
Collapse
Affiliation(s)
- Tengfei Xia
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Zijun Xiong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Chunmei Wang
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
| | - Xiuxiu Sun
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
| | - Yeguang Chen
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Jiali Chen
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
| | - Huasha Qi
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
| | - Heng Liang
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
| | - Lang Zhang
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
| | - Daojun Zheng
- Institute of Tropical Horticulture Research, Hainan, Academy of Agricultural Sciences, Haikou 571100, China
- Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
5
|
Javaid N, Ramzan M, Jabeen S, Du Y, Anwar M, Xiqiang S. The chloroplast genome of Chrozophora sabulosa Kar. & Kir. and its exploration in the evolutionary position uncertainty of genus Chrozophora. BMC Genomics 2024; 25:597. [PMID: 38877411 PMCID: PMC11177538 DOI: 10.1186/s12864-024-10366-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/29/2024] [Indexed: 06/16/2024] Open
Abstract
Chrozophora sabulosa Kar. & Kir. is a biennial herbaceous plant that belongs to the Euphorbiaceae family and has medicinal properties. This research aimed to identify the genetic characteristics and phylogenetic position of the Chrozophora genus within the Euphorbiaceae family. The evolutionary position of the Chrozophora genus was previously unknown due to insufficient research. Therefore, to determine the evolutionary link between C. sabulosa and other related species, we conducted a study using the NGS Illumina platform to sequence the C. sabulosa chloroplast (cp.) genome. The study results showed that the genome was 156,488 bp in length. It had a quadripartite structure consisting of two inverted repeats (IRb and IRa) of 24,649-bp, separated by an 87,696-bp LSC region and a 19,494-bp SSC region. The CP genome contained 113 unique genes, including four rRNA genes, 30 tRNA genes, and 79 CDS genes. In the second copy of the inverted repeat, there were 18 duplicated genes. The C. sabulosa lacks the petD, petB, rpl2, and rps16 intron. The analysis of simple sequence repeats (SSRs) revealed 93 SSR loci of 22 types and 78 oligonucleotide repeats of four kinds. The phylogenetic investigation showed that the Chrozophora genus evolved paraphyletically from other members of the Euphorbiaceae family. To support the phylogenetic findings, we selected species from the Euphorbiaceae and Phyllanthaceae families to compare with C. sabulosa for Ks and Ka substitution rates, InDels investigation, IR contraction and expansion, and SNPs analysis. The results of these comparative studies align with the phylogenetic findings. We identified six highly polymorphic regions shared by both families, which could be used as molecular identifiers for the Chrozophora genus (rpl33-rps18, rps18-rpl20, rps15-ycf1, ndhG-ndhI, psaI-ycf4, petA-psbJ). The cp. genome sequence of C. sabulosa reveals the evolution of plastid sequences in Chrozophora species. This is the first time the cp. genome of a Chrozophora genus has been sequenced, serving as a foundation for future sequencing of other species within the Chrozophoreae tribe and facilitating in-depth taxonomic research. The results of this research will also aid in identifying new Chrozophora species.
Collapse
Affiliation(s)
- Nida Javaid
- The Islamia University, Bahawalpur, Pakistan
| | | | | | - Yanjun Du
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs,School of Rural Revitalization), Hainan University, Haikou, P.R. China
| | - Muhammad Anwar
- School of Tropical Agriculture and Forestry (School of Agriculture and Rural Affairs,School of Rural Revitalization), Hainan University, Haikou, P.R. China.
- Key Laboratory of Genetic and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou, P.R. China.
- , Haikou, P.R. China.
| | - Song Xiqiang
- Key Laboratory of Genetic and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Haikou, P.R. China.
| |
Collapse
|
6
|
Zhang F, Feng LY, Lin PF, Jia JJ, Gao LZ. Chromosome-scale genome assembly of oil-tea tree Camellia crapnelliana. Sci Data 2024; 11:599. [PMID: 38849406 PMCID: PMC11161624 DOI: 10.1038/s41597-024-03459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Camellia crapnelliana Tutch., belonging to the Theaceae family, is an excellent landscape tree species with high ornamental values. It is particularly an important woody oil-bearing plant species with high ecological, economic, and medicinal values. Here, we first report the chromosome-scale reference genome of C. crapnelliana with integrated technologies of SMRT, Hi-C and Illumina sequencing platforms. The genome assembly had a total length of ~2.94 Gb with contig N50 of ~67.5 Mb, and ~96.34% of contigs were assigned to 15 chromosomes. In total, we predicted 37,390 protein-coding genes, ~99.00% of which could be functionally annotated. The chromosome-scale genome of C. crapnelliana will become valuable resources for understanding the genetic basis of the fatty acid biosynthesis, and greatly facilitate the exploration and conservation of C. crapnelliana.
Collapse
Affiliation(s)
- Fen Zhang
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Ying Feng
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Pei-Fan Lin
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Ju-Jin Jia
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China
| | - Li-Zhi Gao
- Engineering Research Center for Selecting and Breeding New Tropical Crop Varieties, Ministry of Education; Tropical Biodiversity and Genomics Research Center, Hainan University, Haikou, 570228, China.
| |
Collapse
|
7
|
Shahzad K, Zhu M, Cao L, Hao Y, Zhou Y, Liu W, Dai J. Phylogenetic conservation in plant phenological traits varies between temperate and subtropical climates in China. FRONTIERS IN PLANT SCIENCE 2024; 15:1367152. [PMID: 38660448 PMCID: PMC11039852 DOI: 10.3389/fpls.2024.1367152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Phenological traits, such as leaf and flowering dates, are proven to be phylogenetically conserved. The relationship between phylogenetic conservation, plant phenology, and climatic factors remains unknown. Here, we assessed phenological features among flowering plants as evidence for phylogenetic conservatism, the tendency for closely related species to share similar ecological and biological attributes. We use spring phenological traits data from 1968-2018 of 65 trees and 49 shrubs in Xi'an (temperate climate) and Guiyang (subtropical climate) to understand plant phenological traits' relationship with phylogeny. Molecular datasets are employed in evolutionary models to test the phylogenetic conservatism in spring phenological characteristics in response to climate-sensitive phenological features. Significant phylogenetic conservation was found in the Xi'an plant's phenological traits, while there was a non-significant conservation in the Guiyang plant species. Phylogenetic generalized least squares (PGLS) models correlate with phenological features significantly in Xi'an while non-significantly in Guiyang. Based on the findings of molecular dating, it was suggested that the Guiyang species split off from their relatives around 46.0 mya during the middle Eocene of the Tertiary Cenozoic Era, while Xi'an species showed a long evolutionary history and diverged from their relatives around 95 mya during the late Cretaceous Mesozoic Era. First leaf dates (FLD) indicative of spring phenology, show that Xi'an adjourned the case later than Guiyang. Unlike FLD, first flower dates (FFD) yield different results as Guiyang flowers appear later than Xi'an's. Our research revealed that various factors, including phylogeny, growth form, and functional features, influenced the diversity of flowering phenology within species in conjunction with local climate circumstances. These results are conducive to understanding evolutionary conservation mechanisms in plant phenology concerning evolutionary processes in different geographical and climate zones.
Collapse
Affiliation(s)
- Khurram Shahzad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China
| | - Mengyao Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China
| | - Lijuan Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China
| | - Yulong Hao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China
| | - Yu Zhou
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China
| | - Wei Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Acadamy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Xia T, Xiong Z, Sun X, Chen J, Wang C, Chen Y, Zheng D. Metabolomic profiles and health-promoting functions of Camellia drupifera mature-seeds were revealed relate to their geographical origins using comparative metabolomic analysis and network pharmacology approach. Food Chem 2023; 426:136619. [PMID: 37329789 DOI: 10.1016/j.foodchem.2023.136619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
To insight into the chemical components and their health-promoting function of Camellia drupifera mature-seeds (CMS) in Hainan and Liangguang, UPLC-MS/MS- and HS-SPME/GC-MS-based metabolomic analyses and network pharmacology approaches were combined preformed to Camellia drupifera mature-seeds samples (CMSSs). Totally, 1057 metabolites were identified, of which 76 and 99 metabolites were annotated as key active ingredients in Traditional Chinese Medicines and the active pharmaceutical ingredients for seven human disease-resistance, respectively. Comparative analysis revealed different metabolomic profiles of CMSSs from Hainan and Liangguang. KEGG annotation and enrichment analysis showed secondary metabolic pathways, especially "flavone and flavonol biosynthesis", were played important roles. Finally, 22 metabolites that only detected in CMSSs from Hainan or Liangguang were explored as potential indicators to separate CMS from Hainan out of Liangguang. Our findings enhanced the understanding of chemical compositions of CMS and provided valuable information for the healthy development of oil-tea Camellia industry in Hainan.
Collapse
Affiliation(s)
- Tengfei Xia
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China.
| | - Zijun Xiong
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiuxiu Sun
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Jiali Chen
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Chunmei Wang
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Yeguang Chen
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China
| | - Daojun Zheng
- The Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China; Sanya Institute of Hainan Academy of Agricultural Sciences, Sanya 572025, China.
| |
Collapse
|
9
|
Chen J, Zhou K, Hu X. Comparisons of Chloroplast Genome Mutations among 13 Samples of Oil-Tea Camellia from South China. Genes (Basel) 2023; 14:genes14051083. [PMID: 37239444 DOI: 10.3390/genes14051083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The differences in cpDNA SNPs and InDels of 13 samples from single trees of different species or populations of oil-tea camellia in South China were examined in this study, and phylogenetic trees were reconstructed based on CDSs and non-CDSs of cpDNAs to research the evolutionary relationships among all samples. The SNPs of all samples included all kinds of substitutions, and the frequency of the transition from AT to GC was highest; meanwhile, the frequencies of all kinds of transversions differed among the samples, and the SNPs exhibited polymorphism. The SNPs were distributed in all the different functional regions of cpDNAs, and approximately half of all SNPs in exons led to missense mutations and the gain or loss of termination codons. There were no InDels in the exons of any cpDNA samples, except those retrieved from Camellia gigantocarpa, although this InDel did not lead to a frame shift. The InDels of all cpDNA samples were unevenly distributed in the intergenic region and upstream and downstream of genes. The genes, regions of the same gene, sites and mutation types in the same region related to the distributions of SNPs, and InDels were inconsistent among samples. The 13 samples were divided into 2 clades and 7 or 6 subclades, and the samples of species from the same sections of the Camellia genus did not belong to the same subclades. Meanwhile, the genetic relationship between the samples of Camellia vietnamensis and the undetermined species from Hainan Province or the population of C. gauchowensis in Xuwen was closer than that between C. vietnamensis and the population of C. gauchowensis in Luchuan, and the genetic relationship among C. osmantha, C. vietnamensis and C. gauchowensis was very close. In sum, SNPs and InDels in the different cpDNAs resulted in variable phenotypes among the different species or populations, and they could be developed into molecular markers for studies on species and population identification and phylogenetic relationships. The conclusion from the identification of undetermined species from Hainan Province and the phylogenetic relationships among 13 oil-tea camellia samples based on cpCDS and cpnon-CDS sequences were the same as those from the former report.
Collapse
Affiliation(s)
- Jing Chen
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Kaibing Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China
| | - Xinwen Hu
- School of Life Science, Hainan University, Haikou 570228, China
| |
Collapse
|
10
|
Yan H, Qi H, Li Y, Wu Y, Wang Y, Chen J, Yu J. Assessment of the Genetic Relationship and Population Structure in Oil-Tea Camellia Species Using Simple Sequence Repeat (SSR) Markers. Genes (Basel) 2022; 13:2162. [PMID: 36421835 PMCID: PMC9691144 DOI: 10.3390/genes13112162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Oil-tea camellia trees, the collective term for a class of economically valuable woody oil crops in China, have attracted extensive attention because of their rich nutritional and pharmaceutical value. This study aimed to analyze the genetic relationship and genetic diversity of oil-tea camellia species using polymorphic SSR markers. One-hundred and forty samples of five species were tested for genetic diversity using twenty-four SSR markers. In this study, a total of 385 alleles were identified using 24 SSR markers, and the average number of alleles per locus was 16.0417. The average Shannon's information index (I) was 0.1890, and the percentages of polymorphic loci (P) of oil-tea camellia trees were 7.79-79.48%, indicating that oil-tea camellia trees have low diversity. Analysis of molecular variance (AMOVA) showed that the majority of genetic variation (77%) was within populations, and a small fraction (23%) occurred among populations. Principal coordinate analysis (PCoA) results indicated that the first two principal axes explained 7.30% (PC1) and 6.68% (PC2) of the total variance, respectively. Both UPGMA and PCoA divided the 140 accessions into three groups. Camellia oleifera clustered into one class, Camellia vietnamensis and Camellia gauchowensis clustered into one class, and Camellia crapnelliana and Camellia chekiangoleosa clustered into another class. It could be speculated that the genetic relationship of C. vietnamensis and C. gauchowensis is quite close. SSR markers could reflect the genetic relationship among oil-tea camellia germplasm resources, and the results of this study could provide comprehensive information on the conservation, collection, and breeding of oil-tea camellia germplasms.
Collapse
Affiliation(s)
- Heqin Yan
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Huasha Qi
- Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou 571100, China
| | - Yang Li
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Yougen Wu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Engineering Research Center for the Selection and Breeding of New Tropical Crop Varieties of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Yong Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jianmiao Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Engineering Research Center for the Selection and Breeding of New Tropical Crop Varieties of Ministry of Education, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Jing Yu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Genome Survey and SSR Analysis of Camellia nitidissima Chi (Theaceae). Genet Res (Camb) 2022; 2022:5417970. [PMID: 36407084 PMCID: PMC9646326 DOI: 10.1155/2022/5417970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Camellia nitidissima Chi (CNC), a species of golden Camellia, is well known as "the queen of camellias." It is an ornamental, medicinal, and edible plant grown in China. In this study, we conducted a genome survey sequencing analysis and simple sequence repeat (SSR) identification of CNC using the Illumina sequencing platform. The 21-mer analysis predicted its genome size to be 2,778.82 Mb, with heterozygosity and repetition rates of 1.42% and 65.27%, respectively. The CNC genome sequences were assembled into 9,399,197 scaffolds, covering ∼2,910 Mb and an N50 of 869 base pair. Its genomic characteristics were found to be similar to those of Camellia oleifera. In addition, 1,940,616 SSRs were identified from the genome data, including mono-(61.85%), di-(28.71%), tri-(6.51%), tetra-(1.85%), penta-(0.57%), and hexanucleotide motifs (0.51%). We believe these data will provide a useful foundation for the development of novel molecular markers for CNC as well as for further whole-genome sequencing of CNC.
Collapse
|
12
|
Yan H, Zheng W, Ye Z, Yu J, Wu Y. Comparison of the Main Metabolites in Different Maturation Stages of Camelliavietnamensis Huang Seeds. Molecules 2022; 27:molecules27206817. [PMID: 36296410 PMCID: PMC9608468 DOI: 10.3390/molecules27206817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Camellia vietnamensis Huang is an important woody oil crop in China, which has attracted much attention because of its abundant nutritional components and pharmaceutical value. Its seeds undergo a complex series of physiological and biochemical changes during maturation, with consequent alterations in metabolites. In order to investigate the endogenous metabolism of C. vietnamensis on Hainan Island during seed development, in this study, ultra-high-performance liquid tandem chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) and multivariate statistical analysis (MSA) were used to analyze the differences in the chemical compounds of C. vietnamensis seeds among the four maturation stages. A total of 293 metabolites were identified from the methanol extract of the seeds of C. vietnamensis. Five metabolites, belonging to benzene and substituted derivatives, 5′-deoxyribonucleosides and linear 1,3-diarylpropanoids, were found in all three comparison groups, with consistently down-regulated trends. The Kyoto Encyclopedia of Genes and Genomes (KEGG) results showed that phloretin and 5′-methylthioadenosine were the differentially expressed metabolites when seeds were in the growth periods of S2 and S3, and indole and L-tryptophan were the differentially expressed metabolites when seeds were in the growth periods of S3 and S4. In addition, 34 flavonoid metabolites were detected, of which 4 were differentially expressed. It was indicated that flavonoids dynamically change during all the oil-tea camellia seed development stages. The findings provide data for the better understanding of endogenous metabolic pathways during C. vietnamensis seed development.
Collapse
Affiliation(s)
- Heqin Yan
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Wei Zheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Zhouchen Ye
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
| | - Jing Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Plants of Hainan Province, College of Horticulture, Hainan University, Haikou 570228, China
- Correspondence: (J.Y.); (Y.W.); Tel.: +86-0898-66279014 (J.Y.)
| | - Yougen Wu
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Correspondence: (J.Y.); (Y.W.); Tel.: +86-0898-66279014 (J.Y.)
| |
Collapse
|
13
|
Comprehensive Analyses of Simple Sequence Repeat (SSR) in Bamboo Genomes and Development of SSR Markers with Peroxidase Genes. Genes (Basel) 2022; 13:genes13091518. [PMID: 36140687 PMCID: PMC9498332 DOI: 10.3390/genes13091518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/21/2022] Open
Abstract
Simple sequence repeats (SSRs) are one of the most important molecular markers, which are widespread in plants. Bamboos are important forest resources worldwide. Here, the comprehensive identification and comparative analysis of SSRs were performed in three woody and two herbaceous bamboo species. Altogether 567,175 perfect SSRs and 71,141 compound SSRs were identified from 5737.8 Mb genome sequences of five bamboo species. Di-nucleotide SSRs were the most predominant type, with an average of ~50,152.2 per species. Most SSRs were located in intergenic regions, while those located in genic regions were relatively less. Moreover, the results of annotation distribution indicated that terms with P450, peroxidase and ATP-binding cassette transporter related to lignin biosynthesis might play important roles in woody and herbaceous bamboos under the mediation of SSRs. Furthermore, the peroxidase gene family consisted of a large number of genes containing SSRs was selected for the evolutionary relationship analysis and SSR markers development. Fifteen SSR markers derived from peroxidase family genes of Phyllostachys edulis were identified as polymorphic in 34 accessions belonging to seven genera in Bambusoideae. These results provided a comprehensive insight of SSR markers into bamboo genomes, which would facilitate bamboo research related to comparative genomics, evolution and marker-assisted selection.
Collapse
|
14
|
Integrative Metabolome and Transcriptome Analysis Reveals the Regulatory Network of Flavonoid Biosynthesis in Response to MeJA in Camelliavietnamensis Huang. Int J Mol Sci 2022; 23:ijms23169370. [PMID: 36012624 PMCID: PMC9409299 DOI: 10.3390/ijms23169370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Flavonoids are secondary metabolites widely found in plants, which perform various biological activities, such as antiinflammation, antioxidation, antitumor, and so on. Camellia vietnamensis Huang, a species of oil-tea Camellia tree, is an important woody oil crop species widely planted on Hainan Island, which provides health benefits with its high antioxidant activity and abundant flavonoid content. However, very little is known about the overall molecular mechanism of flavonoid biosynthesis in C. vietnamensis Huang. In this study, methyl jasmonate (MeJA) is used as an inducer to change the content of secondary metabolites in C. vietnamensis. Then, the potential mechanisms of flavonoid biosynthesis in C. vietnamensis leaves in response to MeJA were analyzed by metabolomics and transcriptomics (RNA sequencing). The results showed that metabolome analysis detected 104 flavonoids and 74 fatty acyls which showed different expression patterns (increased or decreased expression). It was discovered by KEGG analysis that three differentially accumulated metabolites (cinnamaldehyde, kaempferol and quercitrin) were annotated in the phenylpropanoid biosynthesis (ko00940), flavonoid biosynthesis (ko00941), and flavone and flavonol biosynthesis (ko00944) pathways. In the transcriptome analysis, 35 different genes involved in the synthesis of flavonoids were identified by MapMan analysis. The key genes (PAL, 4CL, CCR, CHI, CHS, C4H, FLS) that might be involved in the formation of flavonoid were highly expressed after 2 h of MeJA treatment. This study provides new insights and data supporting the molecular mechanism underlying the metabolism and synthesis of flavonoids in C. vietnamensis under MeJA treatment.
Collapse
|
15
|
Wu Y, Lian Y, Peng S, Wang A, Yang H, Li J, Yang S, Zhou S. Comparative Genomic-Based Study of Reproduction-Related Genes in Three Fruit Fly Species. Front Genet 2022; 13:893695. [PMID: 35692817 PMCID: PMC9185124 DOI: 10.3389/fgene.2022.893695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/25/2022] [Indexed: 11/24/2022] Open
Abstract
Zeugodacus cucurbitae (Coquillett), Bactrocera dorsalis (Hendel), and Ceratitis capitata (Wiedemann) are important pests of fruit and vegetable crops and are difficult to control because of their rapid reproduction rate and egg production. To investigate the key genes regulating reproduction in three fruit fly species, we selected genomic information of three fruit fly species, screened specific genes and single-copy homolog genes, and performed KEGG and GO enrichment analysis on specific genes and single-copy homolog genes of the strong positive select (SP); the results showed that Z. cucurbitae (Coquillett), B. dorsalis (Hendel), and C. capitata (Wiedemann) had seven, 11, and one Vitellogenin-related genes, respectively; Z. cucurbitae (Coquillett) had 84 specific genes enriched in immune system-related pathways; B. dorsalis (Hendel) had 1,121 specific genes enriched in signaling pathways related to cell growth and differentiation; C. capitata (Wiedemann) had 42 specific genes enriched in the degradation and metabolism pathways of exogenous organisms; Z. cucurbitae (Coquillett) may have a stronger immune system; B. dorsalis (Hendel) has a faster developmental and reproductive rate; and C. capitata (Wiedemann) has a higher detoxification capacity. Only one SP single-copy homolog gene (gene name: very long-chain specific acyl-CoA dehydrogenase, mitochondrial) is enriched in the fatty acid metabolic pathway in both Z. cucurbitae (Coquillett) and B. dorsalis (Hendel) as well as in Z. cucurbitae (Coquillett) and C. capitata (Wiedemann). This study provides a molecular basis for studying the reproductive mechanisms of three fruit fly species and provides a scientific basis for developing effective control strategies for fruit flies.
Collapse
Affiliation(s)
- Yinggu Wu
- College of Plant Protection, Hainan University, Haikou, China
| | - Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Sihua Peng
- College of Plant Protection, Hainan University, Haikou, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Heming Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Jinlei Li
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shuyan Yang
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| | - Shihao Zhou
- Sanya Nanfan Research Institute of Hainan University, Sanya, China
| |
Collapse
|
16
|
Qi H, Sun X, Yan W, Ye H, Chen J, Yu J, Jun D, Wang C, Xia T, Chen X, Li D, Zheng D. Genetic relationships and low diversity among the tea-oil Camellia species in Sect . Oleifera, a bulk woody oil crop in China. FRONTIERS IN PLANT SCIENCE 2020; 13:996731. [PMID: 36247558 PMCID: PMC9563498 DOI: 10.3389/fpls.2022.996731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
Tea-oil Camellia is one of the four woody oil crops in the world and has high ecological, economic and medicinal values. However, there are great differences in the classification and merging of tea-oil Camellia Sect. Oleifera species, which brings difficulties to the innovative utilization and production of tea-oil Camellia resources. Here, ISSR, SRAP and chloroplast sequence markers were analyzed in 18 populations of tea-oil Camellia Sect. Oleifera species to explore their phylogenetic relationships and genetic diversity. The results showed that their genetic diversity were low, with mean H and π values of 0.16 and 0.00140, respectively. There was high among-population genetic differentiation, with ISSR and SRAP markers showing an Fst of 0.38 and a high Nm of 1.77 and cpDNA markers showing an Fst of 0.65 and a low Nm of 0.27. The C. gauchowensis, C. vietnamensis and Hainan Island populations formed a single group, showing the closest relationships, and supported being the same species for them with the unifying name C. drupifera and classifying the resources on Hainan Island as C. drupifera. The tea-oil Camellia resources of Hainan Island should be classified as a special ecological type or variety of C. drupifera. However, cpDNA marker-based STRUCTURE analysis showed that the genetic components of the C. osmantha population formed an independent, homozygous cluster; hence, C. osmantha should be a new species in Sect. Oleifera. The C. oleifera var. monosperma and C. oleifera populations clustered into two distinct clades, and the C. oleifera var. monosperma populations formed an independent cluster, accounting for more than 99.00% of its genetic composition; however, the C. oleifera populations contained multiple different cluster components, indicating that C. oleifera var. monosperma significantly differs from C. oleifera and should be considered the independent species C. meiocarpa. Haplotype analysis revealed no rapid expansion in the tested populations, and the haplotypes of C. oleifera, C. meiocarpa and C. osmantha evolved from those of C. drupifera. Our results support the phylogenetic classification of Camellia subgenera, which is highly significant for breeding and production in tea-oil Camellia.
Collapse
Affiliation(s)
- Huasha Qi
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xiuxiu Sun
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Wuping Yan
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- School of Agricultural Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Hang Ye
- Guangxi Key Laboratory of Special Non-Wood Forest Cultivation and Utilization, Improved Variety and Cultivation Engineering Research Center of Oil-Tea Camellia in Guangxi, Guangxi Forestry Research Institute, Nanning, China
| | - Jiali Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Jing Yu
- College of Horticulture, Hainan University, Haikou, China
| | - Dai Jun
- Qionghai Tropical Crop Service Center, Qionghai, China
| | - Chunmei Wang
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Tengfei Xia
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Xuan Chen
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Dongliang Li
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Daojun Zheng
- Hainan, Academy of Agricultural Sciences, Sanya Institute, Sanya, China
- Key Laboratory of Tropic Special Economic Plant Innovation and Utilization, National Germplasm Resource Chengmai Observation and Experiment Station, Institute of Tropical Horticulture Research, Hainan Academy of Agricultural Sciences, Haikou, China
| |
Collapse
|