1
|
Xie M, Wang X, Zeng Q, Shen J, Huang B. Growth physiology and chlorophyll fluorescence analysis of two moss species under different LED light qualities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108777. [PMID: 38820915 DOI: 10.1016/j.plaphy.2024.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/05/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
This study investigated the responses of Didymodon constrictus and Hypnum plumaeforme to different light qualities emitted by light-emitting diodes (LEDs), including white light (WL), red light (RL), blue light (BL), yellow light (YL), green light (GL), and a combination of red and blue light (R1B1L). The research analyzed the fluorescence imaging, photosynthetic pigments, coloration, and growth characteristics related to antioxidant enzymes in these two moss species. The results indicated that R1B1L significantly enhanced the content of photosynthetic pigments, maximum relative electron transport rate (rETRmax), saturation light intensity (IK), and the greenness of the moss. RL improved the maximum quantum yield (Fv/Fm), the light energy efficiency of H. plumaeforme and effective quantum yield in both moss species. In contrast, BL notably increased non-photochemical quenching (NPQ), photochemical quenching (qp), and the steady-state fluorescence decrease ratio (RFD) in H. plumaeforme. The application of GL significantly increases the maximum photon yield (Fv/Fm) in D. constrictus, as well as the light energy efficiency and elongation length, resulting in a shift in the color composition of both moss species towards yellow. Among the light treatments, R1B1L had the highest induction rate and promotional effect on the growth of both moss species. These mosses absorbed GL and RL effectively, while BL played a crucial role in the dissipation of heat and electron transfer in H. plumaeforme. This research provides valuable insights for the regulation of LED light environments and the physiological adaptability of moss in artificial cultivation.
Collapse
Affiliation(s)
- Meixuan Xie
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Xiurong Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou, China.
| | - Qingying Zeng
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Junjie Shen
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| | - Bufang Huang
- College of Forestry, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
2
|
Li Z, Liu J, Liang M, Guo Y, Chen X, Wu H, Jin S. De novo assembly of the complete mitochondrial genome of pepino (Solanum muricatum) using PacBio HiFi sequencing: insights into structure, phylogenetic implications, and RNA editing. BMC PLANT BIOLOGY 2024; 24:361. [PMID: 38702620 PMCID: PMC11069145 DOI: 10.1186/s12870-024-04978-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/02/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Solanum muricatum is an emerging horticultural fruit crop with rich nutritional and antioxidant properties. Although the chromosome-scale genome of this species has been sequenced, its mitochondrial genome sequence has not been reported to date. RESULTS PacBio HiFi sequencing was used to assemble the circular mitogenome of S. muricatum, which was 433,466 bp in length. In total, 38 protein-coding, 19 tRNA, and 3 rRNA genes were annotated. The reticulate mitochondrial conformations with multiple junctions were verified by polymerase chain reaction, and codon usage, sequence repeats, and gene migration from chloroplast to mitochondrial genome were determined. A collinearity analysis of eight Solanum mitogenomes revealed high structural variability. Overall, 585 RNA editing sites in protein coding genes were identified based on RNA-seq data. Among them, mttB was the most frequently edited (52 times), followed by ccmB (46 times). A phylogenetic analysis based on the S. muricatum mitogenome and those of 39 other taxa (including 25 Solanaceae species) revealed the evolutionary and taxonomic status of S. muricatum. CONCLUSIONS We provide the first report of the assembled and annotated S. muricatum mitogenome. This information will help to lay the groundwork for future research on the evolutionary biology of Solanaceae species. Furthermore, the results will assist the development of molecular breeding strategies for S. muricatum based on the most beneficial agronomic traits of this species.
Collapse
Affiliation(s)
- Ziwei Li
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Jiaxun Liu
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Mingtai Liang
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Yanbing Guo
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xia Chen
- Horticultural Research Institute Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650205, China
| | - Hongzhi Wu
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Shoulin Jin
- Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
3
|
He W, Chai Q, Zhao C, Yu A, Fan Z, Yin W, Hu F, Fan H, Sun Y, Wang F. Blue light regulated lignin and cellulose content of soybean petioles and stems under low light intensity. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23091. [PMID: 38669458 DOI: 10.1071/fp23091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/10/2024] [Indexed: 04/28/2024]
Abstract
To improve light harvest and plant structural support under low light intensity, it is useful to investigate the effects of different ratios of blue light on petiole and stem growth. Two true leaves of soybean seedlings were exposed to a total light intensity of 200μmolm-2 s-1 , presented as either white light or three levels of blue light (40μmolm-2 s-1 , 67μmolm-2 s-1 and 100μmolm-2 s-1 ) for 15days. Soybean petioles under the low blue light treatment upregulated expression of genes relating to lignin metabolism, enhancing lignin content compared with the white light treatment. The low blue light treatment had high petiole length, increased plant height and improved petiole strength arising from high lignin content, thus significantly increasing leaf dry weight relative to the white light treatment. Compared with white light, the treatment with the highest blue light ratio reduced plant height and enhanced plant support through increased cellulose and hemicellulose content in the stem. Under low light intensity, 20% blue light enhanced petiole length and strength to improve photosynthate biomass; whereas 50% blue light lowered plants' centre of gravity, preventing lodging and conserving carbohydrate allocation.
Collapse
Affiliation(s)
- Wei He
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Qiang Chai
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Cai Zhao
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Aizhong Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Zhilong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Wen Yin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Falong Hu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Hong Fan
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Yali Sun
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Feng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; and College of Agronomy, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
4
|
Zhao W, Sun X, Wang L, Sun Z, Zhang H, Zhong Q, Yang S. Metabolomics analysis of quality components metabolism during the growth process of pepino ( Solanum muricatum) fruit. PLANT SIGNALING & BEHAVIOR 2023; 18:2283363. [PMID: 37976083 PMCID: PMC10761028 DOI: 10.1080/15592324.2023.2283363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
Pepino (Solanum muricatum), a horticultural crop that has experienced significant growth in the highlands of China over the past two decades, is widely embraced by consumers due to its distinctive taste and nutritional advantages. This study focused on the cultivar 'Qingcanxiang' of pepino grown on the Qinghai-Tibetan Plateau was analyzed using UPLC-QTOF-MS and RNA-seq transcriptome sequencing. Fruit samples were collected at three distinct stages of development, and the results of the metabolomics and transcriptomics were compared and correlated. The study's findings indicate that the 'Qingcanxiang' fruit contained a total of 187 metabolites, comprising 12 distinct categories of compounds, including amino acids and their derivatives, organic acids, sugars and alcohols, phenols and phenolic acids. Of these metabolites, 94 were identified as differential. Significant variations in nutrient composition were observed across the three growth stages of the fruit. Specifically, the stage spanning from the growth to the maturation was identified as the critical stages for nutrient accumulation and flavor development. Transcriptome sequencing analysis revealed a set of highly associated genes between aspartate and quinic acid, namely SIR2, IRAK4, RP-L29, and CCNH. These genes are potentially involved in the regulation of both amino acid and phenolic acid synthesis. Through the application of metabolomics and transcriptomics, this investigation elucidates the alterations in metabolites and the underlying molecular regulatory mechanisms of pepino fruits during three growth stages. The findings furnish a theoretical foundation for the evaluation of nutritional quality and the enhancement of breeding strategies for pepino.
Collapse
Affiliation(s)
- Wenwen Zhao
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Xuemei Sun
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
| | - Lihui Wang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
| | - Zhu Sun
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
| | - Huajing Zhang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Qiwen Zhong
- Key Laboratory of Qinghai-Tibet Plateau Biotechnology Ministry of Education, Qinghai University, Xining, China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, China
- College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Hou Z, Sun Z, Du G, Shao D, Zhong Q, Yang S. Assessment of suitable cultivation region for Pepino ( Solanum muricatum) under different climatic conditions using the MaxEnt model and adaptability in the Qinghai-Tibet plateau. Heliyon 2023; 9:e18974. [PMID: 37636388 PMCID: PMC10448078 DOI: 10.1016/j.heliyon.2023.e18974] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Pepino (Solanum muricatum), a member of the Solanaceae family originating from South America, is cultivated globally. However, the cultivation range and suitable habitat of Pepino have not been extensively studied, which hampers the further development of its cultivation industry. Therefore, we aimed at enrich and expand the planting scope of Pepino. Currently, the main cultivation areas of Pepino in China are the Yunnan-Guizhou Plateau and the Loess Plateau, where the altitude is above 1000 m. In this study, ArcGIS combined with the MaxEnt model was used for prediction, whose area under curve value was 0.949. The main climatic factors affecting the distribution of Pepino are temperature seasonality, annual means temperature, mean temperature of the coldest quarter, elevation, isothermality, and the climate factors, and their cumulative contribution rate of 87.6%. Pepino's main potential distribution areas are located in Yunnan-Guizhou Plateau, Yunnan Province, Hexi Corridor of Loess Plateau, and low altitude areas of Qinghai-Tibet Plateau. The main distribution ranges from 1000 to 2000 m above sea level, and the total suitable area accounts for 20.09% of China's total land area. The prediction results reveal an expanded potential area for Pepino, with no significant migration in the central region of the main potential distribution area by 2050 and 2070. No studies have been conducted on the open-area cultivation of Pepino in northern China. Our findings revealed that the yield and quality in the four experimental sites and final actual cultivation conditions were consistent with the predicted results of MaxEnt. The yiel d per plant in Xunhua and Minhe was significantly different from that in Xining, which was low, and that in Minhe was the highest. Overall, the fruit quality in the Xining region was the lowest among the three regions, which was related to the climatic differences in each region. These results align with the predicted outcomes, indicating that Xining is the least suitable area. Further, these data verify the accuracy of the prediction results. The climate data of the four regions were analyzed simultaneously to elucidate the influence of different climate conditions on the growth of Pepino. Our findings are of considerable significance for introducing characteristic horticultural crops in the Qinghai-Tibet Plateau and using the MaxEnt model to predict the cultivation range of crops.
Collapse
Affiliation(s)
- Zhichao Hou
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, PR China
| | - Zhu Sun
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, PR China
| | - Guolian Du
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, PR China
| | - Dengkui Shao
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, PR China
| | - Qiwen Zhong
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, PR China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xining, PR China
| | - Shipeng Yang
- Qinghai Key Laboratory of Vegetable Genetics and Physiology, Agriculture and Forestry Sciences Institute of Qinghai University, Xining, PR China
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Xining, PR China
- College of Life Sciences, Northwest A&F University, Yangling, PR China
| |
Collapse
|
6
|
Si C, Zhan D, Wang L, Sun X, Zhong Q, Yang S. Systematic Investigation of TCP Gene Family: Genome-Wide Identification and Light-Regulated Gene Expression Analysis in Pepino (Solanum Muricatum). Cells 2023; 12:cells12071015. [PMID: 37048089 PMCID: PMC10093338 DOI: 10.3390/cells12071015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/09/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Plant-specific transcription factors such as the TCP family play crucial roles in light responses and lateral branching. The commercial development of S. muricatum has been influenced by the ease with which its lateral branches can be germinated, especially under greenhouse cultivation during the winter with supplemented LED light. The present study examined the TCP family genes in S. muricatum using bioinformatics analysis (whole-genome sequencing and RNA-seq) to explore the response of this family to different light treatments. Forty-one TCP genes were identified through a genome-wide search; phylogenetic analysis revealed that the CYC/TB1, CIN and Class I subclusters contained 16 SmTCP, 11 SmTCP and 14 SmTCP proteins, respectively. Structural and conserved sequence analysis of SmTCPs indicated that the motifs in the same subcluster were highly similar in structure and the gene structure of SmTCPs was simpler than that in Arabidopsis thaliana; 40 of the 41 SmTCPs were localized to 12 chromosomes. In S. muricatum, 17 tandem repeat sequences and 17 pairs of SmTCP genes were found. We identified eight TCPs that were significantly differentially expressed (DETCPs) under blue light (B) and red light (R), using RNA-seq. The regulatory network of eight DETCPs was preliminarily constructed. All three subclusters responded to red and blue light treatment. To explore the implications of regulatory TCPs in different light treatments for each species, the TCP regulatory gene networks and GO annotations for A. thaliana and S. muricatum were compared. The regulatory mechanisms suggest that the signaling pathways downstream of the TCPs may be partially conserved between the two species. In addition to the response to light, functional regulation was mostly enriched with auxin response, hypocotyl elongation, and lateral branch genesis. In summary, our findings provide a basis for further analysis of the TCP gene family in other crops and broaden the functional insights into TCP genes regarding light responses.
Collapse
Affiliation(s)
- Cheng Si
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Deli Zhan
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Xuemei Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- Correspondence: (Q.Z.); (S.Y.)
| | - Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences Institute of Qinghai University, Xining 810016, China; (C.S.); (D.Z.); (L.W.); (X.S.)
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
- Correspondence: (Q.Z.); (S.Y.)
| |
Collapse
|
7
|
Yang S, Sun Z, Zhang G, Wang L, Zhong Q. Identification of the key metabolites and related genes network modules highly associated with the nutrients and taste components among different Pepino (Solanum muricatum) cultivars. Food Res Int 2023; 163:112287. [PMID: 36596193 DOI: 10.1016/j.foodres.2022.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
There is considerable knowledge about plant compounds that produce flavor, scent, and aroma. Aside from the similarities, however, groups of plant-produced nutrients and taste components have little in common with each other. Network analysis holds promise for metabolic gene discovery, which is especially important in plant systems where metabolic networks are not yet fully resolved. To bridge this gap, we propose a joint model of gene regulation and metabolic reactions in two different pepino varieties. Differential metabolomics analysis is carried out for detection of eventual interaction of compound. We adopted a multi-omics approach to profile the transcriptome and metabolome analyze differences in phenolic acids, flavonoids, organic acids, lipids, alkaloids, and sugars between LOF and SRF. The two most predominant classes of metabolites are phenolic acids and lipids in pepino. Overall results show enrichment in most DEGs was carbohydrate and biosynthesis of secondary metabolites pathway. Results of DEMs predominantly comprised N-p-coumaroyl agmatine and tryptamine, and significant differences were observed in their expression between LOF and SRF. Integrated DEMs and DEGs specific networks were constructed by combining two types of networks: transcriptional regulatory networks composed of interactions between DEMs and the regulated genes, and pepino metabolite-metabolite interaction networks. Newly discovered features, such as DEGs (USPA, UBE2 and DELLA) involved in the production of secondary metabolites are found in coregulated gene clusters. Moreover, lipid metabolites were most involved in DEMs correlations by OPLS-DA while identifying a significant number of DEGs co-regulated by SENP1, HMGCS et al. These results further that the metabolite discrepancies result from characterized the nutrients and taste components between two pepino genotype. Among the possible causes of the differences between species in pepino metabolite concentrations is co-regulated by these DEGs, continue to suggest that novel features of metabolite biosynthetic pathway remain to be uncovered. Finally, the integrated metabolome and transcriptome analyses have revealed that many important metabolic pathways are regulated at the transcriptional level. The metabolites content differences observed among varieties of the same species mainly originates from different regulated genes and enzymes expression. Overall, this study provides new insights into the underlying causes of differences in the plant metabolites and suggests that genetic data can be used to improve its nutrients and taste components.
Collapse
Affiliation(s)
- Shipeng Yang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China; College of Life Sciences, Northwest A&F University, Shaanxi, Yangling 712100, China
| | - Zhu Sun
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Guangnan Zhang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Lihui Wang
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China
| | - Qiwen Zhong
- Laboratory for Research and Utilization of Germplasm Resources in Qinghai Tibet Plateau, Agriculture and Forestry Sciences, Institute of Qinghai University, Qinghai, Xining 810016, China.
| |
Collapse
|