1
|
Bai R, Yang B, Peng K, Xiang A, Wan Z, Li M, Zheng X, Zhao J, zhao Y, Zheng J, Guan P. Identification of a novel dwarfing gene, Rht_m097, on chromosome 4BS in common wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:38. [PMID: 40191669 PMCID: PMC11968616 DOI: 10.1007/s11032-025-01558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/18/2025] [Indexed: 04/09/2025]
Abstract
Plant height is a crucial agronomic trait in wheat, regulated by multiple genes, and significantly influences plant architecture and wheat yield. In this study, a novel dwarf mutant, designated as m097, was developed and characterized through the treatment of seeds from the common wheat cultivar Jinmai47 with ethyl methanesulfonate (EMS). Microscopic analysis revealed that the dwarf phenotype was attributed to a reduction in the longitudinal cell size of the stem. Similar to the wild type, m097 exhibited sensitivity to exogenous gibberellic acid (GA). Genetic analysis indicated that the reduced plant height in m097 was regulated by a semi-dominant dwarfing gene, Rht_m097. Through bulk segregant analysis (BSA) utilizing the wheat 660K SNP array, Rht_m097 was mapped and confined to a region of approximately 2.58 Mb on chromosome arm 4BS, encompassing 16 high-confidence annotated genes. In addition, transcriptome sequencing (RNA-seq) was conducted on the first internode below the panicle of JM47 and m097 at the jointing stage, leading to the identification of two potential candidate genes exhibiting differential expression. Furthermore, the analysis of gene ontology and metabolic pathways from RNA-seq data indicated that the down-regulated differentially expressed genes (DEGs) in m097 were biologically classified as regulating actin cortical patch organization and assembly. Concurrently, it was observed that the up-regulated DEGs were significantly enriched in various phytohormone metabolic pathways, including those involved in indole-3-acetic acid (IAA) biosynthesis, jasmonic acid biosynthesis, and gibberellin signaling. Overall, this study provides a novel genetic resource for the breeding of dwarf wheat and establishes a foundation for subsequent gene cloning. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01558-0.
Collapse
Affiliation(s)
- Rongji Bai
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Bin Yang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Kai Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Aihui Xiang
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Zidong Wan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Mengxin Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Xingwei Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Jiajia Zhao
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Yue zhao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002 China
| | - Jun Zheng
- Institute of Wheat Research, State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Linfen, 041000 China
| | - Panfeng Guan
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001 China
| |
Collapse
|
2
|
Wei N, Hao Y, Tao J, Zhao J, Wu B, Qiao L, Li X, Zheng X, Wang J, Zheng J. Genetic dissection for seedling root-related traits using multiple-methods in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:66. [PMID: 40053141 DOI: 10.1007/s00122-025-04847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 01/31/2025] [Indexed: 03/15/2025]
Abstract
KEY MESSAGE Several quantitative trait loci (QTL) and structural chromosome variations (SCVs) related to seedling root traits were identified using multiple methods, which provided valuable insights to assist breeding efforts in wheat. The root system of wheat affects water and fertilizer use efficiency, stress tolerance, and agronomic traits. Using association analysis and linkage mapping, QTL associated with 11 seedling-stage root traits were identified with single nucleotide polymorphisms (SNPs) and SCVs under both hydroponic nutrient solution culture experiment (NCE) and vermiculite culture experiment (VCE). Except for maximum root length (MRL), the root traits of seedlings under NCE and VCE differed significantly. Root fresh weight (RFW) and root dry weight (RDW) were significantly correlated with most agronomic traits and grain yield. Identification of RFW and RDW by NCE might provide a reference basis for VCE. Co-localization analysis revealed that NCE and VCE simultaneously detected SNP-loci viz. QRdw.sxau-6A, QRd.sxau-1B.2, and QDw.sxau-6A (5.56-8.76% of R2). The SCV-loci Mr1B-3, Mr3A-3 and Mr3A-4 were detected in both NCE and VCE (4.74-9.07% of R2). Furthermore, QRdw.sxau-6A, QSfw.sxau-6A and QRd.sxau-4A were detected using the mixed linear model (MLM), 3 Variance-component multi-locus random-SNP-effect Mixed Linear Mode (3VmrMLM) and rrBLUP. In the association panel, SNPs and SCVs co-localized to 14 MTAs, of which Mr5A-6 and QRd.sxau-5A were significantly associated with root diameter (RD). The association panel and doubled haploid (DH) population co-located 10 QTL, of which QDw.sxau-1D was stably detected. Finally, QDw.sxau-6A and Mg6A-9 overlapped in same genomic location containing candidate genes TraesCS6A02G372300, TraesCS6A02G382900 and TraesCS6A02G365100. The present study contributes novel insights into the genetics of root architecture in wheat.
Collapse
Affiliation(s)
- Naicui Wei
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China
- College of Agriculture, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taigu, China
| | - Yuqiong Hao
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China
| | - Jinbo Tao
- College of Agriculture, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taigu, China
| | - Jiajia Zhao
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China
| | - Bangbang Wu
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China
| | - Ling Qiao
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China
| | - Xiaohua Li
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China
| | - Xingwei Zheng
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China
| | - Juanling Wang
- College of Agriculture, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taigu, China
| | - Jun Zheng
- Institute of Wheat Research, Key Laboratory of Sustainable Dryland Agriculture of Shanxi Province, Shanxi Agricultural University, Linfen, China.
- College of Agriculture, Key Laboratory of Sustainable Dryland Agriculture (Co-construction by Ministry and Province) Ministry of Agriculture and Rural Affairs, Shanxi Agricultural University, Taigu, China.
| |
Collapse
|
3
|
Li X, Bai X, Wu L, Wang C, Liu X, Li Q, Zhang X, Chen F, Lu C, Gao W, Cheng T. Mapping of a Quantitative Trait Locus for Stay-Green Trait in Common Wheat. PLANTS (BASEL, SWITZERLAND) 2025; 14:727. [PMID: 40094602 PMCID: PMC11901440 DOI: 10.3390/plants14050727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
The stay-green (SG) trait enhances photosynthetic activity during the late grain-filling period, benefiting grain yield under drought and heat stresses. CH7034 is a wheat breeding line with SG. To clarify the SG loci carried by CH7034 and obtain linked molecular markers, in this study, a recombinant inbred line (RIL) population derived from the cross between CH7034 and non-SG SY95-71 was genotyped using the Wheat17K single-nucleotide polymorphism (SNP) array, and a high-density genetic map covering 21 chromosomes and consisting of 2159 SNP markers was constructed. Then, the chlorophyll content of flag leaf from each RIL was estimated for mapping, and one QTL for SG on chromosome 7D was identified, temporarily named QSg.sxau-7D, with the maximum phenotypic variance explained of 8.81~11.46%. A PCR-based diagnostic marker 7D-16 for QSg.sxau-7D was developed, and the CH7034 allele of 7D-16 corresponded to the higher flag leaf chlorophyll content, while the 7D-16 SY95-71 allele corresponded to the lower value, which confirmed the genetic effect on SG of QSg.sxau-7D. QSg.sxau-7D located in the 526.4~556.2 Mbp interval is different from all the known SG loci on chromosome 7D, and 69 high-confidence annotated genes within the interval expressed throughout the entire period of flag leaf senescence. Moreover, results of an association analysis based on the diagnostic marker showed that there is a positive correlation between QSg.sxau-7D and thousand-grain weight. Our results revealed a novel QTL QSg.sxau-7D whose CH7034 allele had a strong effect on SG, which can be applied in further wheat molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wei Gao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (X.L.)
| | - Tianling Cheng
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agronomy, Shanxi Agricultural University, Taiyuan 030031, China; (X.L.)
| |
Collapse
|
4
|
Doan PPT, Vuong HH, Kim J. Genetic Foundation of Leaf Senescence: Insights from Natural and Cultivated Plant Diversity. PLANTS (BASEL, SWITZERLAND) 2024; 13:3405. [PMID: 39683197 DOI: 10.3390/plants13233405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024]
Abstract
Leaf senescence, the final stage of leaf development, is crucial for plant fitness as it enhances nutrient reutilization, supporting reproductive success and overall plant adaptation. Understanding its molecular and genetic regulation is essential to improve crop resilience and productivity, particularly in the face of global climate change. This review explores the significant contributions of natural genetic diversity to our understanding of leaf senescence, focusing on insights from model plants and major crops. We discuss the physiological and adaptive significance of senescence in plant development, environmental adaptation, and agricultural productivity. The review emphasizes the importance of natural genetic variation, including studies on natural accessions, landraces, cultivars, and artificial recombinant lines to unravel the genetic basis of senescence. Various approaches, from quantitative trait loci mapping to genome-wide association analysis and in planta functional analysis, have advanced our knowledge of senescence regulation. Current studies focusing on key regulatory genes and pathways underlying natural senescence, identified from natural or recombinant accession and cultivar populations, are highlighted. We also address the adaptive implications of abiotic and biotic stress factors triggering senescence and the genetic mechanisms underlying these responses. Finally, we discuss the challenges in translating these genetic insights into crop improvement. We propose future research directions, such as expanding studies on under-researched crops, investigating multiple stress combinations, and utilizing advanced technologies, including multiomics and gene editing, to harness natural genetic diversity for crop resilience.
Collapse
Affiliation(s)
- Phan Phuong Thao Doan
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Hue Huong Vuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeongsik Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical Horticulture Research Institute, Jeju National University, Jeju 63243, Republic of Korea
- Faculty of Science Education, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
5
|
Li D, Xiao Y, Guo L, Shan B, Liu X, Duan X, Rehman AU, Guo C, Zhang W, Li H, Liu J, Gao X, Cao X. Effect of High Nighttime Temperatures on Growth, Yield, and Quality of Two Wheat Cultivars During the Whole Growth Period. PLANTS (BASEL, SWITZERLAND) 2024; 13:3071. [PMID: 39519987 PMCID: PMC11548653 DOI: 10.3390/plants13213071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
It is a consensus that Earth's climate has been warming. The impact of global warming is asymmetric, that is, there is more substantial warming in the daily minimum surface air temperature and lower warming in the maximum surface air temperature. Previous studies have reported diurnal temperature differences greatly affecting winter wheat yield. However, only a few studies have investigated the impact of global warming on the growth and yield of winter wheat, yet the influence of night warming on quality has not been deeply evaluated. In this study, two wheat cultivars were used as materials: Jimai 44 (JM44) with strong gluten and Jimai 22 (JM22) with medium gluten, to explore the effects of high nighttime temperatures (HNTs) on the growth, yield, and quality of wheat. The results show that HNTs significantly shortened seedling emergence and anthesis periods in both cultivars compared with ambient temperatures (ATs). In addition, HNTs increased the respiration rate at anthesis and grain-filling stages, impeding wheat pollination and grain maturity. HNTs also accelerated leaf senescence and increased the number of sterile spikelets and plant height, but decreased the effective tiller number, the number of spikes per unit area, and grains per spike. As a result, the grain yield of JM22 and JM44 was decreased by 24.6% and 21.2%, respectively. Moreover, HNTs negatively influenced the flour quality of the two wheat cultivars. The current findings provide new insights into the effects of HNTs on the growth, development, yield, and quality of different wheat genotypes during the whole growth period.
Collapse
Affiliation(s)
- Danping Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanjun Xiao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lei Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Baoxue Shan
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiukun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiaoyan Duan
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ata-ur Rehman
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia;
| | - Can Guo
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Wenjia Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xin Gao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Research
Center of Wheat and Maize/State Key Laboratory of Wheat Improvement/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.L.); (Y.X.); (L.G.); (B.S.); (X.L.); (X.D.); (C.G.); (W.Z.); (H.L.)
- Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
6
|
Abdullaev F, Pirogova P, Vodeneev V, Sherstneva O. Chlorophyll Fluorescence in Wheat Breeding for Heat and Drought Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2778. [PMID: 39409648 PMCID: PMC11478672 DOI: 10.3390/plants13192778] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024]
Abstract
The constantly growing need to increase the production of agricultural products in changing climatic conditions makes it necessary to accelerate the development of new cultivars that meet the modern demands of agronomists. Currently, the breeding process includes the stages of genotyping and phenotyping to optimize the selection of promising genotypes. One of the most popular phenotypic methods is the pulse-amplitude modulated (PAM) fluorometry, due to its non-invasiveness and high information content. In this review, we focused on the opportunities of using chlorophyll fluorescence (ChlF) parameters recorded using PAM fluorometry to assess the state of plants in drought and heat stress conditions and predict the economically significant traits of wheat, as one of the most important agricultural crops, and also analyzed the relationship between the ChlF parameters and genetic markers.
Collapse
Affiliation(s)
| | | | | | - Oksana Sherstneva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
7
|
Yang B, Qiao L, Zheng X, Zheng J, Wu B, Li X, Zhao J. Quantitative Trait Loci Mapping of Heading Date in Wheat under Phosphorus Stress Conditions. Genes (Basel) 2024; 15:1150. [PMID: 39336741 PMCID: PMC11431698 DOI: 10.3390/genes15091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Wheat (Triticum aestivum L.) is a crucial cereal crop, contributing around 20% of global caloric intake. However, challenges such as diminishing arable land, water shortages, and climate change threaten wheat production, making yield enhancement crucial for global food security. The heading date (HD) is a critical factor influencing wheat's growth cycle, harvest timing, climate adaptability, and yield. Understanding the genetic determinants of HD is essential for developing high-yield and stable wheat varieties. This study used a doubled haploid (DH) population from a cross between Jinmai 47 and Jinmai 84. QTL analysis of HD was performed under three phosphorus (P) treatments (low, medium, and normal) across six environments, using Wheat15K high-density SNP technology. The study identified 39 QTLs for HD, distributed across ten chromosomes, accounting for 2.39% to 29.52% of the phenotypic variance. Notably, five stable and major QTLs (Qhd.saw-3A.7, Qhd.saw-3A.8, Qhd.saw-3A.9, Qhd.saw-4A.4, and Qhd.saw-4D.3) were consistently detected across varying P conditions. The additive effects of these major QTLs showed that favorable alleles significantly delayed HD. There was a clear trend of increasing HD delay as the number of favorable alleles increased. Among them, Qhd.saw-3A.8, Qhd.saw-3A.9, and Qhd.saw-4D.3 were identified as novel QTLs with no prior reports of HD QTLs/genes in their respective intervals. Candidate gene analysis highlighted seven highly expressed genes related to Ca2+ transport, hormone signaling, glycosylation, and zinc finger proteins, likely involved in HD regulation. This research elucidates the genetic basis of wheat HD under P stress, providing critical insights for breeding high-yield, stable wheat varieties suited to low-P environments.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| |
Collapse
|
8
|
Luo B, Zhang G, Yu T, Zhang C, Yang G, Luo X, Zhang S, Guo J, Zhang H, Zheng H, Tang Z, Li Q, Lan Y, Ma P, Nie Z, Zhang X, Liu D, Wu L, Gao D, Gao S, Su S, Guo J, Gao S. Genome-wide association studies dissect low-phosphorus stress response genes underling field and seedling traits in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:172. [PMID: 38935162 DOI: 10.1007/s00122-024-04681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Phosphorus (P) is an essential element for plant growth, and its deficiency can cause decreased crop yield. This study systematically evaluated the low-phosphate (Pi) response traits in a large population at maturity and seedling stages, and explored candidate genes and their interrelationships with specific traits. The results revealed a greater sensitivity of seedling maize to low-Pi stress compared to that at maturity stage. The phenotypic response patterns to low-Pi stress at different stages were independent. Chlorophyll content was found to be a potential indicator for screening low-Pi-tolerant materials in the field. A total of 2900 and 1446 significantly associated genes at the maturity and seedling stages were identified, respectively. Among these genes, 972 were uniquely associated with maturity traits, while 330 were specifically detected at the seedling stage under low-Pi stress. Moreover, 768 and 733 genes were specifically associated with index values (low-Pi trait/normal-Pi trait) at maturity and seedling stage, respectively. Genetic network diagrams showed that the low-Pi response gene Zm00001d022226 was specifically associated with multiple primary P-related traits under low-Pi conditions. A total of 963 out of 2966 genes specifically associated with traits under low-Pi conditions or index values were found to be induced by low-Pi stress. Notably, ZmSPX4.1 and ZmSPX2 were sharply up-regulated in response to low-Pi stress across different lines or tissues. These findings advance our understanding of maize's response to low-Pi stress at different developmental stages, shedding light on the genes and pathways implicated in this response.
Collapse
Affiliation(s)
- Bowen Luo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guidi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ting Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Chong Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Guohui Yang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Xianfu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shuhao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Jianyong Guo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Haiying Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Hao Zheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zirui Tang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qile Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yuzhou Lan
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, P.O. Box 190, 23422, Lomma, Sweden
| | - Peng Ma
- Mianyang Academy of Agricultural Sciences, Mianyang, 621023, Sichuan, China
- Crop Characteristic Resources Creation and Utilization Key Laboratory of Sichuan Province, Mianyang, China
| | - Zhi Nie
- Sichuan Academy of Agricultural Sciences, Biotechnology and Nuclear Technology Research Institute, Chengdu, China
| | - Xiao Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Dan Liu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Ling Wu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Duojiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shiqiang Gao
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China
| | - Shunzong Su
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jia Guo
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shibin Gao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, Sichuan, China.
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Sallam M, Ghazy A, Al-Doss A, Al-Ashkar I. Combining Genetic and Phenotypic Analyses for Detecting Bread Wheat Genotypes of Drought Tolerance through Multivariate Analysis Techniques. Life (Basel) 2024; 14:183. [PMID: 38398692 PMCID: PMC10890630 DOI: 10.3390/life14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Successfully promoting drought tolerance in wheat genotypes will require several procedures, such as field experimentations, measuring relevant traits, using analysis tools of high precision and efficiency, and taking a complementary approach that combines analyses of phenotyping and genotyping at once. The aim of this study is to assess the genetic diversity of 60 genotypes using SSR (simple sequence repeat) markers collected from several regions of the world and select 13 of them as more genetically diverse to be re-evaluated under field conditions to study drought stress by estimating 30 agro-physio-biochemical traits. Genetic parameters and multivariate analysis were used to compare genotype traits and identify which traits are increasingly efficient at detecting wheat genotypes of drought tolerance. Hierarchical cluster (HC) analysis of SSR markers divided the genotypes into five main categories of drought tolerance: four high tolerant (HT), eight tolerant (T), nine moderate tolerant (MT), six sensitive (S), and 33 high sensitive (HS). Six traits exhibit a combination of high heritability (>60%) and genetic gain (>20%). Analyses of principal components and stepwise multiple linear regression together identified nine traits (grain yield, flag leaf area, stomatal conductance, plant height, relative turgidity, glycine betaine, polyphenol oxidase, chlorophyll content, and grain-filling duration) as a screening tool that effectively detects the variation among the 13 genotypes used. HC analysis of the nine traits divided genotypes into three main categories: T, MT, and S, representing three, five, and five genotypes, respectively, and were completely identical in linear discriminant analysis. But in the case of SSR markers, they were classified into three main categories: T, MT, and S, representing five, three, and five genotypes, respectively, which are both significantly correlated as per the Mantel test. The SSR markers were associated with nine traits, which are considered an assistance tool in the selection process for drought tolerance. So, this study is useful and has successfully detected several agro-physio-biochemical traits, associated SSR markers, and some drought-tolerant genotypes, coupled with our knowledge of the phenotypic and genotypic basis of wheat genotypes.
Collapse
Affiliation(s)
| | | | | | - Ibrahim Al-Ashkar
- Department of Plant Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (M.S.); (A.G.); (A.A.-D.)
| |
Collapse
|
10
|
Alomari DZ, Schierenbeck M, Alqudah AM, Alqahtani MD, Wagner S, Rolletschek H, Borisjuk L, Röder MS. Wheat Grains as a Sustainable Source of Protein for Health. Nutrients 2023; 15:4398. [PMID: 37892473 PMCID: PMC10609835 DOI: 10.3390/nu15204398] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat (Triticum aestivum L.) and identify the genes governing grain protein content (GPC) that improve end-use quality and in turn human health. Genome-wide association was applied using the 90k iSELECT Infinium and 35k Affymetrix arrays with GPC quantified by using a proteomic-based technique in 369 wheat genotypes over three field-year trials. The results showed significant natural variation among bread wheat genotypes that led to detecting 54 significant quantitative trait nucleotides (QTNs) surpassing the false discovery rate (FDR) threshold. These QTNs showed contrasting effects on GPC ranging from -0.50 to +0.54% that can be used for protein content improvement. Further bioinformatics analyses reported that these QTNs are genomically linked with 35 candidate genes showing high expression during grain development. The putative candidate genes have functions in the binding, remobilization, or transport of protein. For instance, the promising QTN AX-94727470 on chromosome 6B increases GPC by +0.47% and is physically located inside the gene TraesCS6B02G384500 annotated as Trehalose 6-phosphate phosphatase (T6P), which can be employed to improve grain protein quality. Our findings are valuable for the enhancement of protein content and end-use quality in one of the major daily food resources that ultimately improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z. Alomari
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
- CONICET CCT La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| |
Collapse
|