1
|
Hu L, Xu T, Cai Y, Qin Y, Zheng Q, Chen T, Gong L, Yang J, Zhao Y, Chen J, Chen Z, Wu Y, Yang Z. Identifying Candidate Genes for Grape ( Vitis vinifera L.) Fruit Firmness through Genome-Wide Association Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8413-8425. [PMID: 40143437 PMCID: PMC11987033 DOI: 10.1021/acs.jafc.5c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/21/2025] [Accepted: 03/20/2025] [Indexed: 03/28/2025]
Abstract
The firmness of grape berries is a critical factor influencing their commercial feasibility and is highly valued by both breeders and consumers. However, grape berry firmness is a complex quantitative trait governed by multiple genes, and our understanding of its genetic regulatory network remains incomplete. To elucidate the genetic mechanisms underlying grape berry firmness, this study employed genome-wide association studies (GWAS) to identify potential candidate genes associated with fruit firmness and cellulose content and to explore the gene regulatory network that controls their variation. The comprehensive GWAS results identified CesA as a candidate gene potentially regulating fruit firmness through its involvement in cellulose biosynthesis. To validate these findings, whole-genome gene family identification analysis was conducted. Furthermore, the key gene VvCslD5 was selected for functional validation, which included overexpression studies and subcellular localization. This study provides valuable insights into the regulation of biosynthesis and transcriptional signaling pathways that govern the structure of grape cell walls as well as the mechanisms underlying variations in grape firmness. These findings establish a solid foundation for future functional analyses of grape traits and will enhance breeding practices aimed at improving grape quality.
Collapse
Affiliation(s)
- Lingling Hu
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Tao Xu
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Yingjian Cai
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Yi Qin
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Qianqian Zheng
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Tianchi Chen
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
- College
of Life Sciences, Zhejiang University, No. 866 Yuhangtang Road, Hangzhou 31000, China
| | - Lili Gong
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Jie Yang
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Yuyang Zhao
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Jiangbing Chen
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Zhihui Chen
- College
of Life Sciences, Dundee University, Dundee DD1 5EH, U.K.
| | - Yueyan Wu
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| | - Zhongyi Yang
- College
of Biology and Environment, Zhejiang Wanli
University, No. 8 Qianhu South Road, Ningbo 315000, China
| |
Collapse
|
2
|
Scariolo F, Gabelli G, Magon G, Palumbo F, Pirrello C, Farinati S, Curioni A, Devillars A, Lucchin M, Barcaccia G, Vannozzi A. The Transcriptional Landscape of Berry Skin in Red and White PIWI ("Pilzwiderstandsfähig") Grapevines Possessing QTLs for Partial Resistance to Downy and Powdery Mildews. PLANTS (BASEL, SWITZERLAND) 2024; 13:2574. [PMID: 39339549 PMCID: PMC11434962 DOI: 10.3390/plants13182574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/06/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
PIWI, from the German word Pilzwiderstandsfähig, meaning "fungus-resistant", refers to grapevine cultivars bred for resistance to fungal pathogens such as Erysiphe necator (the causal agent of powdery mildew) and Plasmopara viticola (the causal agent of downy mildew), two major diseases in viticulture. These varieties are typically developed through traditional breeding, often crossbreeding European Vitis vinifera with American or Asian species that carry natural disease resistance. This study investigates the transcriptional profiles of exocarp tissues in mature berries from four PIWI grapevine varieties compared to their elite parental counterparts using RNA-seq analysis. We performed RNA-seq on four PIWI varieties (two red and two white) and their noble parents to identify differential gene expression patterns. Comprehensive analyses, including Differential Gene Expression (DEGs), Gene Set Enrichment Analysis (GSEA), Weighted Gene Co-expression Network Analysis (WGCNA), and tau analysis, revealed distinct gene clusters and individual genes characterizing the transcriptional landscape of PIWI varieties. Differentially expressed genes indicated significant changes in pathways related to organic acid metabolism and membrane transport, potentially contributing to enhanced resilience. WGCNA and k-means clustering highlighted co-expression modules linked to PIWI genotypes and their unique tolerance profiles. Tau analysis identified genes uniquely expressed in specific genotypes, with several already known for their defense roles. These findings offer insights into the molecular mechanisms underlying grapevine resistance and suggest promising avenues for breeding strategies to enhance disease resistance and overall grape quality in viticulture.
Collapse
Affiliation(s)
- Francesco Scariolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
| | - Giovanni Gabelli
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Carlotta Pirrello
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy;
| | - Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Andrea Curioni
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Aurélien Devillars
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Margherita Lucchin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Agripolis, 35020 Legnaro, Italy; (F.S.); (G.G.); (G.M.); (F.P.); (S.F.); (A.C.); (A.D.); (M.L.); (G.B.)
- Interdepartmental Centre for Research in Viticulture and Enology, University of Padua, Via XXVIII Aprile, 31015 Conegliano, Italy
| |
Collapse
|
3
|
Usai G, Fambrini M, Pugliesi C, Simoni S. Exploring the patterns of evolution: Core thoughts and focus on the saltational model. Biosystems 2024; 238:105181. [PMID: 38479653 DOI: 10.1016/j.biosystems.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
The Modern Synthesis, a pillar in biological thought, united Darwin's species origin concepts with Mendel's laws of character heredity, providing a comprehensive understanding of evolution within species. Highlighting phenotypic variation and natural selection, it elucidated the environment's role as a selective force, shaping populations over time. This framework integrated additional mechanisms, including genetic drift, random mutations, and gene flow, predicting their cumulative effects on microevolution and the emergence of new species. Beyond the Modern Synthesis, the Extended Evolutionary Synthesis expands perspectives by recognizing the role of developmental plasticity, non-genetic inheritance, and epigenetics. We suggest that these aspects coexist in the plant evolutionary process; in this context, we focus on the saltational model, emphasizing how saltation events, such as dichotomous saltation, chromosomal mutations, epigenetic phenomena, and polyploidy, contribute to rapid evolutionary changes. The saltational model proposes that certain evolutionary changes, such as the rise of new species, may result suddenly from single macromutations rather than from gradual changes in DNA sequences and allele frequencies within a species over time. These events, observed in domesticated and wild higher plants, provide well-defined mechanistic bases, revealing their profound impact on plant diversity and rapid evolutionary events. Notably, next-generation sequencing exposes the likely crucial role of allopolyploidy and autopolyploidy (saltational events) in generating new plant species, each characterized by distinct chromosomal complements. In conclusion, through this review, we offer a thorough exploration of the ongoing dissertation on the saltational model, elucidating its implications for our understanding of plant evolutionary processes and paving the way for continued research in this intriguing field.
Collapse
Affiliation(s)
- Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Samuel Simoni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|